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The considered problem

The problem of tertiary voltage control (TVC)

In alternating current: power is a complex number
real part = real power
imaginary part = reactive power

reactive power transmission causes voltage drops and
losses
⇒ need a regulation of the reactive power produced by

each generator of an electrical network

under some physical laws

problem and model provided by Tractebel Engineering
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Modelling of the problem
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νmini ≤ νi ≤ νmaxi , ai binary ∀i ∈ N
Pmini ≤ Pi ≤ Pmaxi , Qmini ≤ Qi ≤ Qmaxi ∀i ∈ NG

rminik ≤ rik ≤ rmaxik , rik ∈ Edisc discrete ∀ik ∈ T
θmini ≤ θi ≤ θmaxi , ∀i ∈ N
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Modelling of the problem (continued)

where

Pik = νi
2(yik cos(ζik ) + gik )− νiνk yik cos(ζik + θi − θk ), ∀ik ∈ Se

i
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i

⇒ highly nonlinear, nonconvex
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Use of discrete variables

ai : binary (i ∈ N)
→ variables on/off

rik ∈ Edisc : discrete (ik ∈ T )
e.g.: Edisc = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
→ the transformer ratio can only

be equal to some fixed values

⇒ Mixed Integer NonConvex Programming problem
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Motivation

Current approach: heuristics:
Successive solutions of relaxed nonlinear problems

⇒ wish to work with more reliable/robust methods

Idea: use an appropriate linear approximation of the problem
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How can we approximate a nonlinear component by a
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e.g.: sin
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How can we approximate a nonlinear component by a
linear function?

e.g.: sin

→ not accurate
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How can we approximate a nonlinear component by a
linear function?

e.g.: sin

→ piecewise linear
approximation
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Approximation by special ordered sets

To approximate f (x) by f̃ (x), we use

f (x) ≈ f̃ (x) =
n∑

i=1

λi f (xi)

where xi are breakpoints, i = 1, n

x =
n∑

i=1

λixi

n∑
i=1

λi = 1, λi ≥ 0, i = 1, n

Refs: Beale, Tomlin, Martin
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SOS condition: motivation

If λ1 6= 0, λ5 6= 0
λi = 0, i = 2, .., 4
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SOS formulation (1 dimension)

f (x) ≈ f̃ (x) =
n∑

i=1

λi f (xi)

where xi are breakpoints, i = 1, .., n

x =
n∑

i=1

λixi

n∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., n

SOS type 2 condition:
At most 2 λi can be nonzero.
Moreover, these λi must be adjacent.
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SOS formulation (1 dimension)

f (x) ≈ f̃ (x) =
n∑

i=1

λi f (xi)

where xi are breakpoints, i = 1, .., n

x =
n∑

i=1

λixi

n∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., n


(LP)

At most 2 λi can be nonzero.
Moreover, these λi must be adjacent.



(LP)
+

branching
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SOS formulation (2 dimensions)

f (x , y) ≈ f̃ (x , y) =
n∑

i=1

m∑
j=1

λij f (xi , yj)

where (xi , yj) are breakpoints, i = 1, .., n, j = 1, .., m

x =
n∑

i=1

m∑
j=1

λijxi

y =
n∑

i=1

m∑
j=1

λijyj

n∑
i=1

m∑
j=1

λij = 1, λij ≥ 0, i = 1, ..., n, j = 1, .., m

At most 3 λij can be nonzero.
Moreover, these λij must be adjacent on a triangle.
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Illustration: xy

On [−2 : 2]× [−2 : 2] :
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Illustration: xy

Approximation by SOS: 3 breakpoints are used in each
dimension
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Illustration: xy

Dividing the feasible domain into triangles
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Approximation by special ordered sets (3 dimensions
and more)

the same reasoning could be used

BUT introduction of a lot of variables into the problem:
for k breakpoints in each dimension:

1 dim : k var λ

2 dim : k2 var λ

3 dim : k3 var λ
...
n dim : kn var λ

Idea: decompose problem into components of 1 or 2
variables
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Decomposition of the problem

Computational graph for
c = 4x1 − x2

2 − 0.2x2x4 sin(x3) Decomposition of the
problem into nonlinear
components of 1 or 2
variables

Approximation of each of
these nonlinear
components by new
variables

Computational graph not
unique

Wanufelle, Leyffer, Sartenaer, Toint Algorithm for solving MINCP problems



Motivations
Piecewise approximations
Description of the method

Future work and conclusions

Linear suitable function
SOS approximation
Decomposition of the problem

Main components of the problem

3 main kinds of nonlinear components:

square functions: x2

trigonometric functions: sin(x), cos(x)

bilinear functions: xy
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Insufficient approximation

Building of a linear
approximation problem
subject to SOS conditions

There exists an efficient
method (Martin)

− solution of an
approximation problem

− the solution of that
problem has little chance
to be feasible for our
our problem

− physical constraints
must be absolutely
satisfied

⇒ use outer approximations
to guarantee solution

Wanufelle, Leyffer, Sartenaer, Toint Algorithm for solving MINCP problems



Motivations
Piecewise approximations
Description of the method

Future work and conclusions

Linear suitable function
SOS approximation
Decomposition of the problem

Insufficient approximation

Building of a linear
approximation problem
subject to SOS conditions

There exists an efficient
method (Martin)

− solution of an
approximation problem

− the solution of that
problem has little chance
to be feasible for our
our problem

− physical constraints
must be absolutely
satisfied

⇒ use outer approximations
to guarantee solution

Wanufelle, Leyffer, Sartenaer, Toint Algorithm for solving MINCP problems



Motivations
Piecewise approximations
Description of the method

Future work and conclusions

Linear suitable function
SOS approximation
Decomposition of the problem

Insufficient approximation

Building of a linear
approximation problem
subject to SOS conditions

There exists an efficient
method (Martin)

− solution of an
approximation problem

− the solution of that
problem has little chance
to be feasible for our
our problem

− physical constraints
must be absolutely
satisfied

⇒ use outer approximations
to guarantee solution

Wanufelle, Leyffer, Sartenaer, Toint Algorithm for solving MINCP problems



Motivations
Piecewise approximations
Description of the method

Future work and conclusions

Outer approximations
Refinement of approximations
Algorithm
Numerical results

Outer approximations

Idea: replace each nonlinear component f by a
linear domain which includes the nonlinear function.
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Outer approximations

Idea: replace each nonlinear component f by a
linear domain which includes the nonlinear function.

Idea recently used (Gatzke)

Difference: use of linear big M
approximations instead of SOS
approximations
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Determination of an outer domain

For each component f , compute the approximation errors

εL(xi , xi+1) = maxx∈[xi ,xi+1](f̃ (x)− f (x), 0)

εU(xi , xi+1) = maxx∈[xi ,xi+1](f (x)− f̃ (x), 0)

and replace f (x) ≈ f̃ (x) by

f̃ (x)− εL(xi , xi+1) ≤ f (x) ≤ f̃ (x) + εU(xi , xi+1), xi ≤ x ≤ xi+1

on each piece
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Too coarse approximations

Results in an outer approximation

BUT its solution can be very far from the true solution

→ Need to refine the approximations
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Refinement of approximations

→ Use of a branch-and-bound tree:
reduce the approximation interval, refine the mesh

better approximations
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Refinement of approximations

→ Use of a branch-and-bound tree:
reduce the approximation interval, refine the mesh

better approximations

ideal framework to treat discrete variables
→ 2 types of division

guaranteed convergence to the global optimum in the end
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Choices associated to the branch-and-bound process

Choice of the node to refine:
depth-first search

Choice of the variable to divide:

the variable of the starting problem leading to the largest
error of approximation
not on the SOS variables λ . . . inefficient

Upper bound:
the solution of the 1st linear problem is employed as
starting point for the NLP problem to generate an upper
bound
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Algorithm

1 Build an outer approximation problem, (LP0), for (P)
k := 0

2 Propagate bounds through the computational graph and
compute the approximation errors. Update (LPk )

3 Solve (LPk ) → (x̃ , f̃ )
If f̃ ≥ U ⇒ the node can be cut,
else if x̃ is feasible for (P) and f (x̃) < U

⇒ U = f (x̃), x∗ = x̃ and the node can be cut
else choose a variable j and divide the pbm (LPk ) into 2

new subproblems

4 If the tree is completely explored: STOP
else k := k + 1

choose a node which has not been examined yet
and go to 2.
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Numerical results

Toy problem:

(P)



min w1 sin w4

s.t. 4w1 − w2
2 − 0.2w2w4 sin w3 ≤ 1

w2 − 0.5w2w4 cos w3 ≤ −2
0 ≤ w1 ≤ 4
0 ≤ w2 ≤ 3
0 ≤ w3 ≤ 2π
0 ≤ w4 ≤ 2π

no discrete variables

5 breakpoints for the trigonometric components,
3 for the others

approximation problem: 69 variables and 46 constraints
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Numerical results (continued)

Nonlinear local optimization solvers available on NEOS:
KO for 87.5% of the solvers

Nonlinear global optimization solver, ACRS: OK but
random

BARON: not applicable due to sin(x), cos(x)

Our method: global solution obtained (and proved) after
the solution of 103 LP and 2 NLP (ε = 10E-6).
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Future work

More tests problems

Increase the speed of convergence by

improving presolve
developing better rules to choose the variable to divide and
the place to divide
testing finer approximations (quadratic, inequalities of
McCormick,...)
adding cuts to the problem of approximation

Introduction of discrete variables into the problem
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Conclusion

Promising approach

Able to ensure convergence to the global optimum
But convergence can be slow

Solution of linear problems only
But needs the introduction of new variables and constraints
into the approximation problem
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