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Supervised learning algorithm (Batch Mode)

◮ Inputs: learning sample ls of (x , y) observations (ls ∈ (X × Y )∗)

◮ Output: a model f ls
A ∈ FA ⊂ Y X (decision tree, MLP, ...)
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◮ Objectives:
◮ maximise accuracy on independent observations
◮ interpretability, scalability
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Induction of single decision/regression trees (Reminder)

◮ Algorithm development (1960-1995)

◮ Top-down growing of trees by recursive partitioning
◮ local optimisation of split score (variance, entropy)

◮ Bottom-up pruning to prevent over-fitting
◮ global optimisation of complexity vs accuracy (B/V tradeoff)

◮ Characterisation
◮ Highly scalable algorithm
◮ Interpretable models (rules)
◮ Robustness: irrelevant variables, scaling, outliers
◮ Expected accuracy often low (high variance)

◮ Many variants and extensions
◮ C4.5, CART, ID3 . . .
◮ oblique, fuzzy, hybrid . . .
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Bias/variance decomposition (of average error)

Accuracy of models produced by an algorithm in a given context

◮ Assume problem (inputs X , outputs Y , relation P(X , Y ))

and sampling scheme (e.g. fixed size LS ∼ PN(X , Y )).

◮ Take model error function (e.g. Errf ,Y ≡ EX ,Y {(f (X ) − Y )2})

and evaluate expected error of algo A (i.e. ErrA,Y ≡ ELS{Errf ls
A

,Y })

◮ We have ErrA,Y − ErrB,Y = Bias2
A + VarA

where
◮ B is the best possible model (here, B(·) ≡ EY |·)

◮ Bias2
A = Errf A,B (f A is the average model)

◮ VarA = ErrA,f A
(dependence of model on sample)
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Ensembles of trees (How?/Why?)

◮ Perturb and Combine paradigm (1990-2005)

◮ Build several trees (e.g. 100, by randomisation)

◮ Combine trees by voting, averaging. . . (i.e. aggregation)

◮ Characterisation
◮ Can preserve scalability (+ trivially parallel)

◮ Does not preserve interpretability
◮ Can preserve robustness (irrelevant variables, scaling, outliers)

◮ Can improve accuracy significantly

◮ Many generic variants (Bagging, Stacking, Boosting, . . . )

◮ Non-generic variants: (Random Forests, Random Subspace, . . . )

Louis Wehenkel Extremely Randomised Trees et al. (6/56)



Ensembles of extremely randomised trees
Tree-based batch mode reinforcement learning

Pixel-based image classification

Motivation(s)
Extra-Trees algorithm
Characterisation(s)

Extra-Trees: learning algorithm

T1 T3 T4 T5T2

◮ Ensemble of trees T1, T2, . . .TT (generated independently)

◮ Random splitting (choice of variable and cut-point)

◮ Trees are fully developed (perfect fit on ls)

◮ Ultra-fast (
√

nN log N)

(Presentation based on [Geu02, GEW04])
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Extra-Trees: prediction algorithm

◮ Aggregation (majority vote or averaging)

T2T1 T3 T4 T5

C1 C2 CM
0 0 0 00 00 14 0

C2

?
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Extra-Trees splitting algorithm (for numerical attributes)

Given a node of a tree and a sample S corresponding to it

◮ Select K attributes {X1, . . . ,XK} at random;

◮ For each Xi (draw a split at random)
◮ Let xS

i,min and xS
i,max be the min and max values of Xi in S ;

◮ Draw a cut-point xi,c uniformly in ]xS
i,min, x

S
i,max];

◮ Let ti = [Xi < xi,c ].

◮ Return a split ti = arg maxti Score(ti , S).

NB: the node becomes a LEAF

◮ if |S | < nmin;

◮ if all attributes are constant in S ;

◮ if the output is constant in S ;
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Geometric properties (of Single Trees)
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A single fully developed CART tree.
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Geometric properties (of Tree Bagging models)
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With T = 100 trees in the ensemble.
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Geometric properties (of Extra-Trees models)
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With T = 100 trees in the ensemble.
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Parameters (of the Extra-Trees learning algorithm)

Averaging strength T
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Parameters (of the Extra-Trees learning algorithm)

Attribute selection strength K (w.r.t. irrelevant variables)
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Bias/variance tradeoff (of the Extra-Trees models)
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Bias/variance tradeoff (of the Extra-Trees learning algorithm)

Effect of attribute selection strength K
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Extra-Trees: variants of setting K

Automatic tuning of K

◮ by (10-fold) cross-validation
◮ on (large enough) independent test sample

Default settings

◮ K =
√

n, in classification
◮ K = n, in regression (n =number of variables)

Totally randomised trees

◮ correspond to K = 1
◮ splits (attribute and cut-point) totally at random
◮ ultra-fast “non-supervised” learning algorithm
◮ tree structures independent of output values
◮ akin to KNN, or kernel-based method

Louis Wehenkel Extremely Randomised Trees et al. (17/56)



Ensembles of extremely randomised trees
Tree-based batch mode reinforcement learning

Pixel-based image classification

Problem setting
Proposed solution
Illustration

Ensembles of extremely randomised trees
Motivation(s)
Extra-Trees algorithm
Characterisation(s)

Tree-based batch mode reinforcement learning
Problem setting
Proposed solution
Illustration

Pixel-based image classification
Problem setting
Proposed solution
Some results
Further refinements

Louis Wehenkel Extremely Randomised Trees et al. (18/56)



Ensembles of extremely randomised trees
Tree-based batch mode reinforcement learning

Pixel-based image classification

Problem setting
Proposed solution
Illustration

Optimal control problem (stochastic, discrete-time, infinite horizon)

xt+1 = f (xt , ut , wt) (stochastic dynamics, wt ∼ Pw (wt |xt , ut))

rt = r(xt , ut , wt) (real valued reward signal bounded over X × U × W )

γ (discount factor ∈ [0, 1))

µ(·) : X → U (closed-loop, stationary control policy)

Jµ

h (x) = E
{

∑h−1
t=0 γtr(xt , µ(xt), wt)|x0 = x

}

(finite horizon return)

Jµ

∞(x) = limh→∞ Jµ

h (x) (infinite horizon return)

Optimal infinite horizon control policy
µ∗
∞(·) that maximises Jµ

∞(x) for all x .

(Presentation based on [EGW03, EGW05])
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Batch mode reinforcement learning problem

Suppose that instead of system model (f (·, ·, ·), r(·, ·, ·), Pw (·|·, ·)),
the only information we have is a (finite) sample F of four-tuples:

F = {(xt i , ut i , rt i , xt i+1), i = 1, · · · , #F}.
Each four-tuple corresponds to a system transition

The objective of batch mode RL is to determine an approximation
µ̂(·) of µ∗

∞(·) from the sole knowledge of F

(Many one-step episodes: xt i distributed independently)

(One single episode with many steps: xt i+1 = xt i +1)

(In general: several multi-step episodes)
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Q-function iteration to solve Bellman equation

Idea: µ∗
∞(·) ≡ can be obtained as the limit of a sequence of

optimal finite horizon (time-varying) policies.

Define sequence of value-functions Qh and policies µ∗
h(t, x) by:

Q0(x , u) ≡ 0
Qh(x , u) = Ew |x ,u{r(x , u, w)+γmaxu′Qh−1(f (x , u, w), u′)} (∀h ∈ N)

µ∗
h(t, x) = arg maxu Qh−t(x , u) (∀h ∈ N,∀t = 0, . . . , h − 1)

NB: these sequences converge (Qh
sup−→ Q∞ and µ

∗
h (t, x)

Jµ

∞−→ µ
∗
∞(x))

Alternative view: (Bellman equation)

Q∞(x , u) = Ew |x ,u{r(x , u, w) + γmaxu′Q∞(f (x , u, w), u′)}
µ∗
∞(x) = arg maxu Q∞(x , u)
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Fitted Q iteration algorithm

Idea1: replace expectation operator Ew |x ,u by average over sample
Idea2: represent Qh by model to interpolate from samples
Supervised learning (regression): does the two in a single step

◮ Inputs:
◮ a set F of four-tuples ((xt i , ut i , rt i , xt i +1), i = 1, · · · , #F )

◮ a regression algorithm A (A : ls → f ls
A )

◮ Initialisation: Q̂0(x , u) ≡ 0

◮ Iteration: (for h = 1, 2, . . .)

◮ Training set construction: (∀i = 1, . . . #F )

xi = (xt i , ut i );
yi = rt i + γ maxu Q̂h−1(xt i+1, u),

◮ Q-function fitting:
Q̂h = A(ls) where ls = ((x1, y1), . . . , (x#F , y#F ))
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Coupling with tree-based models

Use tree-based regression as supervised learning algorithm

◮ Tree-based methods: ‘non-divergence’ to infinity

◮ Kernel-based methods: ‘convergence’ (when h → ∞)

◮ Tree structures frozen for h > h0 ⇒ kernel-based method

Solves at the same time

◮ System identification (implicitly)

◮ State-space discretisation (and curse-of-dimensionality)

◮ Bellman equation (iteratively and approximately)

Generality of the framework

◮ Non strong hypothesis on f , r (discrete, continuous, high-dimensional)

◮ Minimum-time problems (define r(x , u, w) = 1Goal (f (x , u, w)))

◮ Stabilisation problems (define r(x , u, w) = ||f (x , u, w) − xref ||)

Louis Wehenkel Extremely Randomised Trees et al. (23/56)



Ensembles of extremely randomised trees
Tree-based batch mode reinforcement learning

Pixel-based image classification

Problem setting
Proposed solution
Illustration

Illustration - Electric power system stabilisation

2
C7

G2 G4

6 7 9 10 11 3 G3

L7 L9 C9
4

TCSC
G1 1 5

Figure: Four-machine test system

◮ Use of simulator + 1000 random episodes (60s, ∆t =50ms)

◮ 5-dimensional X × U space; F contains 1100,000 four-tuples.

◮ “Reward”: power oscillations and loss of stability (γ = 0.95)

◮ Policy learning by fitted Q-function iteration (h = 100) with
Extra-Trees (T = 50;K = 5; nmin = 2)
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Electric power system stabilisation
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Figure: The system responses to 100 ms, self-clearing, short circuit
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Electric power system stabilisation
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Figure: 100 ms short circuit cleared by opening line
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Electric power system stabilisation
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Generic pixel-based image classification

Challenge:

Create a robust image classification algorithm by the sole
use of supervised learning on the low-level pixel-based
representation of the images.

Question:

How to inject invariance (scale, translation, orientation)
in a generic way into a supervised learning algorithm ?

NB: work used mainly on Extra-Trees, but other supervised
learners could also be used (e.g. SVMs, KNN. . . ).

(Presentation based on [MGPW04, MGPW05])
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Examples

◮ Hand written digit recognition (0, 1, 2, ..., 9)

◮ Face classification (Jim, Jane, John, ...)
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Examples

◮ Texture classification (Metal, Bricks, Flowers, Seeds, ...)
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Examples

◮ Object recognition (Cup X, Bottle Y, Fruit Z, ...)
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Principle of solution (global)

◮ Learning sample of N pre-classified images,

ls = {(ai
, c i ), i = 1, . . . ,N}

ai : vector of pixel values of the entire image
c i : image class
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Principle of solution (local)
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Learning sample of Nw sub-windows (size w × w , pre-classified),

ls = {(ai
, c i ), i = 1, . . . ,Nw}

ai : vector of pixel-values of the sub-window
c i : class of mother image (from which the window was extracted)
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Local approach: prediction
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Datasets and protocols

Datasets # images # base attributes # classes Nw w

MNIST 70000 784 (28 ∗ 28 ∗ 1) 10 360,000 24

ORL 400 10304 (92 ∗ 112 ∗ 1) 40 120,000 20

COIL-100 7200 3072 (32 ∗ 32 ∗ 3) 100 120,000 16

OUTEX 864 49152 (128 ∗ 128 ∗ 3) 54 120,000 4

◮ MNIST: LS = 60000 images ; TS = 10000 images

◮ ORL: Stratified cross-validation: 10 random splits LS = 360; TS = 40

◮ COIL-100: LS = 1800 images ; TS = 5400 images (36 images per object)

◮ OUTEX: LS = 432 images (8 images per texture) ; TS = 432 images (8 images per texture)
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A few results: accuracy
DBs Extra-Trees Extra-Trees State-of-the-art

with sub-windows

MNIST 3.26% 2.63% 0.5% [DKN04]

ORL 4.56% ± 1.43 1.66% ± 1.08 2.0% [Rav04]

COIL-100 1.96% 0.37% 0.1% [OM02]

OUTEX 65.05% 2.78% 0.2% [MPV02]

24 × 24:

20 × 20:

16 × 16:

4 × 4 :
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A few results: CPU times

◮ Learning stage: depends on parameters
MNIST: 6h, ORL: 37s, COIL-100: 1h, OUTEX: 11m

◮ Prediction: depends on parameters and sub-window sampling
◮ Exhaustive (all sub-windows)
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MNIST: 2msec, ORL: 354msec
COIL-100: 14msec, OUTEX: 800msec

◮ Random subset of sub-windows
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MNIST: 1msec, ORL: 10msec
COIL-100: 5msec, OUTEX: 33msec
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Sub-windows of random size (robustness w.r.t. scale)

◮ Extraction of sub-windows of random size

◮ Rescaling to standard size
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Sub-windows of random size and orientation (more robustness)

◮ Extraction of sub-windows of random size
◮ + Random rotation
◮ Rescaling to standard size

C1 C2 C3

C1 C1 C1 C1 C1 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3

Louis Wehenkel Extremely Randomised Trees et al. (40/56)



Ensembles of extremely randomised trees
Tree-based batch mode reinforcement learning

Pixel-based image classification

Problem setting
Proposed solution
Some results
Further refinements

Attribute importance measures (global approach)

Compute information quantity (Shannon) brought by each pixel in
each tree, and average over the trees.

ORL (faces) MNIST (all digits) MNIST (0 vs 8)
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Supervised learning based methodology

Biomarker identification

of attributes
Importance ranking

Peak selection
Discretization
Pre−processing:

Data + Cross−validation
Machine Learning

Biomarkers

Biomarker selection

Model and

(Presentation based on [GFd+04])
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RA and IBD

RA Early diagnosis of Rhumatoid Arthritis

IBD Better understanding of Inflammatory Bowel Diseases

Datasets collected at University Hospital of Liège.

Patients Number of attributes
Dataset #target #others Raw p = .3% p = .5% p = 1% Peaks

RA 68 138 15445 1026 626 319 136
IBD 240 240 13799 1086 664 338 152

Toolbox: Single trees, Tree Bagging, Tree Boosting, Random Forests, Extra-Trees
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Biomarker identification
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Figure: Variation of accuracy with number of biomarkers (Tree Boosting)
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Graphical visualisation of biomarker identification (RA)
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Steal-mill control (ULg, PEPITe, ARCELOR)

◮ Development of a
friction model,
taking into
account steel
quality and
temperature.

◮ Improve
pre-setting of
steel-mill
controller

◮ Reduce waste
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Wide area control of power systems (ULg, PEPITe, Hydro-Québec)

◮ Improve emergency control scheme

◮ Churchill-Falls power plant

◮ Reduce probability of blackout

◮ Reduce over/under-tripping
◮ Adjust load shedding scheme

◮ Database generation

◮ 10,000 real-time snapshots
sampled (several years)

◮ Massive time-domain
simulations

◮ New rules in operation

◮ Methodology has been adopted
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Failure analysis of manufacturing process (PEPITe, Valéo)

Problem

◮ Car reflector manufacturing line
◮ High, unexplained defect rate
◮ 40 process parameters (T,H, pH, flow...)

measured every 5 minutes

Approach

◮ Two-month period data collection
◮ Database of 10,000×40 measurements
◮ Data mining using PEPITo software
◮ Identification of the root cause
◮ Default rate reduced by 20%
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SCADA system data mining (PEPITe, AREVA, TENNET)

Challenges faced by TENNET (South NL subsystem)

◮ Minimise exchanges of reactive power
◮ Formalise operators actions
◮ Discover optimal network states
◮ Optimise forecasting of industrial loads

◮ Decide of network upgrades effectively
◮ Justify long-term planning decisions
◮ Validation of state estimator

Goal of this project: show the value of Data
Mining with respect to these challenges.

Based on 6 months, 15´ sampling of 3200 data-points

◮ 900 status, 2200 analog, 100 calculated

◮ Database: 16000 rows, 3200 columns
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