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LINEAR FRACTIONAL PROGRAMMING
A NEW BICRITERIA APPROACH

Jodo C. N. CLIMACO

Departamento de Engenharia Electrotécnica
da Faculdade de Ciéncias da Universidade de Coimbra,
3000 Coimbra, Portugal

and

Domingos M. CARDOSO

Departamento de Matematica
da Universidade de Aveiro,
3800 Aveiro, Portugal

ABSTRACT

The linear fractional programming problem is formulated and a new algorithm for solving
this type of problem is presented. In each iteration of the method one proceeds to a very
narrow evaluation of the error incurred by the current approximation to the optimum. This
error may be obtained by some parametric methods, but in our algorithm we use a distinct
analysis based on a suggestive graphical bicriteria representation. Some computational
experiments comparing the algorithms were carried out.




1. Introduction

-The aim of this work is to introduce a new aligorithm to solve
linear fractional prograsming problems by using a bicriteria
linear programming approach.

-The linear fractional programming problems usually admit the
following foraulation:

ain {f{x)=f{{x)/fa(x): xeX} (Py)

shere:

fi(x)=c;tx+pj, c;aR", ;&R for i=1,2
X={xaR": Ax=b, x20}

AsR®XN bsR® and a,nel with a<n

X2 and compact

-Let us also suppose that f{(x)20 and f3(x)>0 vxeX,

-1t should be noted that in the published articles on |inear
fractional programming, in addition to the formulation given
for (Py), only the condition fo(x)>0 ¥xeX is required instead

of the conditions here imposed: f{{x)20 ¥xeX and f7(x)>0 vxeX.
-Hosever, in practice, if 3x'eX: f{(x')<0 the problem in

question can be easily transformed into another equivalent
problem, in the sense that it admits the same set of optisum
solutions and observes the general given foraulation,

-In Climaco et al [?] and Nykowski et al [6), it is suggested
the transformation of (Py) into a bicriteria problen:

ain fI(X) 5 max fz(x)
Xxe ¥ Xe ¥

or it be: (PZ )

- fz(X)

-Hith this formulation, we intend to fix the set of non
dominated solutions of this probles. The aeaning of non
dominated solution is the following :

-Let xq,xyeX, we say that x; dominates xp (x{Dxp) iff

F{x1)<F(xy), where:
F(xy)sF(xp) iff f]-()q)éfi(xz),-fz(x])é—fz(xz) and F(x{)#*F(x3).
-ldentifying by Ay the set of dominated solutions, i. e,

Min F(x), where F(X)=[ f1(x1
Xe X




Kpe{xeX: 3Ix'eX, x'Dx}, the set of not dominated solutions,
identified by Xy, is given by Ky=X\Xp.

-Throughout this paper we sill designate the set of optimum
solutions of (Py) by ¥*, that is, ¥*s{x*eX: f(x*)$f(x) vxeK}.

Theorem | !
If for the problem (Py) f{(x)>0 ¥xeX, then RNQX'.

Theorem 2

There is at least one point x*e%* shich is an extreme point
of X.

-Based on theorems 1 and 2, it is easily acknosledged that
from the solution of |inear programs of the type:

min{hy(x)=fy(x)-ufa(x): xaX} (P, )

where the parameter o takes suitable values, we end by getting
the optimua solution to (Py). He will identify by %4 an optimal

~

solution (extreme point) of the program (Py) and by hy the

respect ive optimal value (F‘u=hu(iu)).

-fis in the presented method, the foundation of methods -such
as the one of Martos [1] (in which the objective function
(0.f.) changes from simplex iteration to simplex iteration),
the one of Isbell and Narlow [3]), the one of Frankel, Novaes
and Poilack [4] 2 and the methods described in [13]) and [14]-
lies upon the solution of linear programs (Py), with the real

parameter o varying in a suitable range of values,

-The methods described in [13] and [14]) are dedicated to
nonlinear programming and are based on the application of the
classic bisection-method to the determnination of the root of
the equation, n(x)=0 with n{w)=h,, where 4 is a concave
picewise |inear function,

-0ther approaches, either have other essential aims, different
from the solution of (Py), as it is the case for the method

introduced by Holf [12] (more concerned with the analysis of
this programs than with solving the probiem) or are based on
the classic nethod of Charnes and Cooper [2]. In any case they

1Taking into account the formulation, given to (P ) and (P ) we remark that:

If 3x'eX: 11(x)=0, then x'eX™  however may 3x'aX: f{(x")=0 and x’ eXy.
23ee the version of this method presented by Nykowski and Zolkiewski [6] that solve the
linear fractional programming problem using an approach like (P2),




present certain computational disadvantages comparatively to
the ones already indicated.

-The bicriteria approach method although could be considered
in some aspects similar to some of the referred methods, mainly
the ones based on the bisection-method (because, Iike them, it
is possible to calculate a rather narrow value of the error
incurred by the approximation to the optimum given by the
point obtoined in each iteration) Is quite different from ail
of them in the way how the parameter o« is obtained., The fixing
of this parameter during the iterative process, Is always made
from two suboptimal solutions with values of the numerator and
denominator functions of the o.f., higher than and lower than
the ones obtained for the optimum solution teo (Py),

respectively. The development of the method enables the images
of these points in the objectives space of (Pz) to become more

and more close, but continueing to frame the image or images of
the optimum solution or solutions of (Py) in this space.

2. The bicriteria approach method

~The method we are going to present, can be considered related
to "NISE" 3 studled by Cohon [8], with respect to the way it
determines the error incurred when it approximates the optimum
by the iterated point,

-Let  G:RN---->R2  such that  G(x)=(fa(x),f((x)), the

application of the method leads to a sucession of special
bidimensional bisections in order to determine a graduaily
more “tighter” region to which the image by "G", of the
searched opt isum, belongs.

~-Before presenting the new algorithe it Is conuvenient to
introduce some results in order to facilitate the proof of its
convergence.

-The theorems 3 and 4, to be presented, set up the fundamental
resuits of this method and they wili enable to make the proof
of the convergence {enunciated in theorem 5).

~Hith the aim of simplifying the theorems proofs several
lemmas are presented in appendix; 5.1, 5.2 and 5.4 have the
objective of establishing the criteria correction for stopping
the algorithm and 5.3 is used to avoid the redundancy in the
confirmation of certain conditions.

~-From now on (ﬂm) will only be defined for positive & (x>0).

3An interactive muitiobjective linear programming method.




Lemma 3.1

V%, solution of (Py), and vx*ex* the following system of

inequalities is valid:
f1(x*)-0f(x*) 2y (%)
f1(x*)-(%, ) 2(x*)$0

The proof is trivial,

Theorem 3

¥4y, solution of (Py), vx*ax* we have:
(a) he (%040 = f1(x*)8f1(%,) & fo(x*)$fa(x,)
(b) he(%, )20 = f1(x*)2f1(2,) & folx*)2fp(%)
(c) hy(%y)=0 = f(x*)=f(%,)

proof:
(a) hy(%, )¢0 & a-f(%,)>0

Froa lemma 3.1, we have:
~F (o f p(x*)E (5, Vo= (%, )
f1(x*)-f (% ) f(x*)50
(o1 (5, D) (x* DS (- (5, 1) (%)
ond since by hypothesis a-f(x1)>0 we say conciude that
fz(x*)éfz(iu). From this result and from the 2" jnequality in

the above system, we may conclude: fi(x')ﬁfi(iu).

0
{b) proof as in {(a).

{c) proof is trivial,

Theorem 4

Let (Puﬂ) and (Fuﬂ) such that huﬂ<0: h“ﬂ>0’ fz(iuﬂ)=f2(iaﬂ)
and (f;(i“ﬂ)-fi(Raﬂ)/(fz(iuﬂ)-fz(iaﬂ))l{aﬂ,ﬂﬂ}.

Let &-lin{(f1(iuﬂ)-f1(Ruﬂ))/(fz(iuﬂ)-fz(iaﬂ)),f(xn),f(xg)}.
Then f,(ﬁaﬂ)éf;(ﬂﬁ)§f1(ﬁaﬂ) and f2(§a8)§f2(§&)§f2(iaﬂ) 1,

proof:

4Have in attention that R& is the optimal solution of ( P&).




-By the hypothesis fy(x,)-fj(x)$&(fplse)-fa(x)) vxex ('),
-Since® fI(Q&)-fl(i%)Zﬂ, fz(ia)-fz(iaﬂ)gl], &>0 © and the
particular case of the relation (*), for x=f¢aﬁ, we get:
f1(Q&)-f,(iaﬁ)ﬁ.&(fz(i&)-fz(ias));
-He can conclude that fz(ﬁa)-fz(ﬁ%)gﬂ. Also the relation (')

for the particulor case of x=>‘4“ﬂ, becomes:

i i 4. )-f1(%, ) S
and so its easily concluded that f1(x&) fl(&uﬂ)=0' thus
conpleting the proof.
0

-Since we already have the necessary results for justifying
the bicriteria approach method, this will now be described by
the corresponding algorithm, where ¢ identifies the upper bound
for the error Incurred when the point obtained in the current

iteration is taken as an approximation to the optimum, and x*
identifies this approximation deterained for ¢ not greater than
the admissible error,

-{f the value of ¢ associated with the approximation is zero,

this means that the current point belongs to %* and so it is an
optimal solution to the problem (P{),

Algorithm:
0. Choose 3 real positive value for ¥ and choose a real value not less than | for K;
Determine iu?;

:rﬁ£=0 then begin X ¢ % p; ¢¢-0; STOP end;

If ﬁ°?<0 then begin
agéal; iaﬂ(—-i 9 %y, % p; repeat
ct,(—f(xu)/k‘;
Determine % ;
lfﬁu=0 then begin
X" eX ;e60; STOP
end
untit hy (xg ) 20;
ogéo; iuﬁ(—-ia
end;

S8y the lemma 4.3 in appendix.
51n according whith the lemma 4.2 in apendix, having in attention that g0




\f h >0 then begin

u3<—a°;>‘<%<-i°9; gk p);
Determineiuﬂ;

if f. =0 then begin
g ey

X Reugy £40; STOP

end
end;

I o(Re ) =T 2(Ree ) then begin
- ® X Ry £60; STOP
“B; »
end;
i€0; gotostep 1;

bor(r, (:‘cuﬂ)-fl(:‘4%))/(fz(%)—fz(ius))e{aA%} then
begin
x" =" such that x'e{arg min{f(;‘eaﬂ) , f(ﬁaa)});

¢&0;
SToP
end;

i1+ 1; olemin{(f, (Rogg )1 1 (Rt /(1 BT Rt D) M R ) Ree )

Determine Xyl

If fyi= O then begin X", i; e¢-0; STOP end;

If Ryi= rw(&,,ﬂ) then begin x*t—iaﬂ; ¢¢0; STOP end;

If fy,} < O then begin N E ogéoe; gotostep 2 end;
If fy,i> O then begin i%eiui ; g o 0o to step 2 end;

2. 1f foleg)=12( Reng) then begin X Roygs £40; STOP end;

e1fy (Roug) MR )= min{f (Ree )1 Ren DM
If e>admissible error then Degin
go back to step 1

end
else begin
x€x’ such that x'&{arg min{f(iuﬂ).f( iuﬂ)}}; 3TOP
end
end(of algerithm).
Theorem 5

vo.0sR*, vka[1,+00[, the introduced algoritha determines the
solution to (Py) after a finite nuaber of steps.




N

10

proof:

Applicotion of STEP 0

-In step 0, if fig=0 then by the theores 3 (c) % pek®.
Otherwise ﬁ°P>0 or ﬁ£<0.

(i) Suppose that ﬁ°P<0.

-Rccording to the algorithe it results that ag=x?, ;‘uﬂ=i£'
u-f(ioe)/k and thence we determine X,. If ﬁ“<0 then we do
a=f(X, )/k ond again we detersine X, . This procedure will be
repeated until ﬁaZO.

-1t should be noted that ﬁa<0 = f(ia)“(id)'?
ied being an extreme point calculated by the methed
imnedlately before X .Hhenever ﬁ“<0, this

o
means that the extrese point "‘u. decrease the

objective function with respect to iu!' Therefore

the fact that the number of extreme points of ¥ is
finite, after the execution of a finite number of

these procedures, entails that we have ﬁazo.
-1f ﬁu=0 then, once again by theores 3 {c) it results that

iae}{', otherwise, according to the algorithe, ag o undiaa-i“.

(ii) Suppose that ﬁ£>0.
-According to the algorithe we get xg-a®, *"‘B-iof” aﬂ-f(ioP) and
thence we deteraine ’.‘uﬂ

- £ i X g)m <

h“ﬁfo' since huﬁ(xof’) 0 and huﬁ'huﬁ(") yxel.

-if huﬁ=0 then like before, by theorem 3 (c) it results that
- x
xuﬂ-x .

-Nevertheless if the optisum is not found neither by (i) nor
by (ii), we'll have, in any case, h <0 and h, >0 and by theores

*q 8
3:

TR (MEM () a fz(iaB)ifz(x')sz(iuﬂ)
-1f fz(iuﬂ)'fz(iaﬂ) 8 then i(,_BeH*, otherwise go to step 1.

7Have in attention thet k21,
8By lemma 5.2 in appendix.




fnelication of STEPS | and 2;
~1f (f‘(i‘qﬂ)-f‘(%%))/(fz(i‘(,ﬂ)-fz(%%))-{uﬂ,%} ve oy

:onelude that {%ﬂ,i%}nx'iﬂ, so X*>larg nin(f(&,ﬂ),f(%gﬁ)”
' ~Let us suppose that
(F) G- 11 (o) /(9B )= F2(Reng) Y0 (g g} €1,
from the algoritha we have:
a*-nin{(fl(ﬁaﬂ)-ﬁ(i%))/(fz(iaﬂ)-fz(i%)),f(i,,ﬂ),f(i%)}
and thence we determine Xi.

-If hyis0 then from theorem 3 (c) % jw%*, otherwise if
x 10

haihy, | (Rg) then fo ek .

-Let us suppose that the condition (') holds, h,i*0 and alse
hoi*hy, i (Rx)

-By theorea 4 we have:

SICAUTCHIT O PR PR ETPTCIEPTCM

-1f hyi<0 by theorem 3, we conclude that f|(x’)$fl(ial) and

f2(x')$f2(iul) 80!
TS GMSAG) 8 12(RedSTp(x")S1 (5,

and since (fl("‘u});fz(ie,j))‘(fl("‘aﬂ):fz(f‘aﬂ)) (notice that by
hypothesis ﬁulﬂhul(ﬁ“ﬂ)), we'll have from ('t) that either
fl(*ai)<fl(*aﬂ) or fZ(*oJ)“z(iaﬂ)'

-If ﬁui>0 fron theorem 3 it Is concluded that fl(iai)Sfl(x*)
and fp(%,)4f2(x*). Consequent iy:

fl(ioJ)Sfl(x*)SfI(it“ﬂ) A 12(RDE(x* 50208 )

ond like before from (*'') we conclude that f,(ﬁ%)d'(iai) or
fz(i%)dz(iui). It must be remarked that since the hypothesis of
the lemma 5.3, in appendix, are hold, F‘ai’hai(*aﬂ) is equivalent
to F'u.ixhux"‘us) and therefore (fI(iOJ),fz(ioJ))*(fl(iaﬂ),fz(iaﬂ)).

-fis ¥ is convex compact with a finite number of extreme
points, if we consider that fz(i%)-fz(iaﬂ), F'a,i‘hui("‘aﬂ) and
that (') holds in all the iterations of the method in the course

9%ee lemma 5.1 in appendix.
Y0according to lemma 5.4 in appendix.
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of STEP 1, then it will only be possible to get a certain number
of times either EMKB or Fuu,i>0. Then, for some i, we'll

necessarily have ﬁ£=0. Therefore from theorea 3 (c) %ﬂsxt.
-Finally if in any iteration, in the course of STEP 2, it

comes about that fz(”uﬁ) fZ(&uﬂ) then ﬁuﬁext !
1]

-1t should be noted that values of the parameters 2 in R*

and k in [1,+c0[, have no influence in the convergence of the
nethod, in the sense that this will necessarily ocurr.
-fi carefull analysis of the algorithm, teads to the conclusion

that the more close «° is to the optimum value the more rapid
is the convergence of the algorithm. So the knowledge of an
approximation to the optimum, {if it exists) must be taken into

account in the choice of the value for &9,

-Somet imes the characteristics of the o.f, of the problem can
give some information about the limits of the interval to which
the optimum value belongs. For instance if the coefficients of
the denominator function and its independent term are
positives, we can conclude the following:

¢ . 2 ¢y

Let —B = pin{—*, i=1,.,n} and —23 = max{—%, j=1,_,n}
€ €2, € €2
p i q i

If x*eX®, then:
c c
1 1 Tttt
nin{——E,El}§f(x‘)§|ux{——9,El} ()
c c
2p 2 2q 2
(see formulation given to Py).

-This conclusion derives from the Cauchy inequalities [9]:
-If ny,n3, . ,ng are real numbers and dy,dy, - ,dy are
positive, then:
n +n,+.
"n{‘—; i=1,. ,t}S—J——g————5<|ax{——, i=1,_t}
d +d2 - d

-Hithout loss of generality, suppose that Uc{x*],_,x*t_;},
with t-1¢a, where x*;, for i=1,.,t-1 identifies each of the non

null components of the optimum solution x*.

ViFrom Lemma 5.2




-Uith n;=cq x*; and d;=cp x"| for i=1,2,.,t-1, ny=By and dy=h;
ve have 61;*‘l/°2,x*|’°1|/°2i for i=1,_,t-1, and in these

conditions we obtain the inequalities (1),

-Rs for parameter k, we think, from computational experinments,
that k=2 is a good choice.

-1f o9 takes a value not jess than the optimum value of (P|)
and k takes the wvalue 1, the method doesn't leave STEP O

without finding the optimal solution and behaves similarly to
the Isbell et al's method.

3. Evaluation of the error incurred when we take point xk,

obtained at the "kt iteration of the method, as an
approximation to the solution of (Py).

~This method allows the estimation, for each point x!
{obtained at the ith iteration of the algorithe}, of an upper
bound for the error incurred shen that point is taken as an
approximation to the optimum, which is lower the higher is the
order "i" of the iteration.

-This possibility is of great interest in situations where the
nuaber of extreme points in the neighbourhood of the optimum is
high. In this situation not only the absolute precision ¢=0 (in
the present algorithm the wupper bound for the error is
designated as ¢), may entail a large number iterations that are
not justifiable but also in extreme cases this may have no
sense, taking into account numerical considerations.

-Rccording to the previous study we know that in each
iteration of the method, once *u.ﬂ and *u.B have been determined,

if x'ex*, then:
f,(i:u,B)Sﬁ(x')Sf,(imﬂ) PR ELPICS ELPIEN
and in these conditions:
f,(ﬁ%)/fz(&,ﬂ)sf(x')s.|n(f(>‘<,,ﬂ),f(ﬁ%)}.
-Uhen approximating x* by the arg lin{f(&mﬂ),f(iuﬁ)},the
incurred error is not greater than
o 1) () T )-2ind (i) TR

-This upper bound may still be reduced by taking as lower
bound for the objective function's value in X, the value of

that function corresponding to the point of G(RM) '2 which is

12 With 6(x)=(1(x).1 1 (x)).




the intersection of the support lines of that regiop thqt go
through  points (fz(i“ﬂ-),ﬁ(ﬁaﬂ)) and (fz(xaﬂ)-,ﬁ(xaﬂ))
respectively. That is f{(X)/f5(X) is such that (fo(X),f{(X))
is a solution to the system of equations:

f|(x)-0tﬂf2(x)=ﬁuﬂ

f,(x)-cnafz(xﬁﬁuﬂ
-1t should be noted that, according to the proposed method, if
*“ﬂ and *aﬂ are points different from the searched optimum we
have;

ﬁuﬂ<0 = f(iuﬂ)ﬂxﬂ

ﬁuam = f(iua)ma
-Let us consider the figure 1. Taking into account that the
lines rg, rg defined by the equations h“ﬂ(")'ﬁuﬂ and h“B(X)-h“B

respect ively, are the support lines of G(X), the whole feasible
region 13 is contained in the shadowed area, since:

hmﬂ(x)ZI:muﬂ vxe¥
h“B(X)gh“a vxel

-Therefore, taking into account that oq,0geR* and that
f(:‘gaﬂ)*(orﬂ, f(iue)mg, any line which passes through the origin
and a point (fy(x),f{(x)) of the shadowed region, has a slope

f(x) not less than the slope of the line that passes through
the origin and the point (fy(X),f{(X)), intersection of rg and

rg- | fig. 1

e )

1
- L >
f:p‘mBj fz(xog,ﬂ) A
'$The feasible ragion is defined by "6(X)".
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-Consequently we have f(x)2f(X) vxeX and in particular
f(x*)2f(R).
-On the other hand the condition f(i)lfg(iaﬁ)/fz(guﬂ), is

also verified and hence the upper bound for the error cannot be
greater than the one initially considered If we take the value:

S-If(i)-lin{f(&uﬂ),f(iuﬂ)}l (1)

-This value "8" chosen for upper bound of the error is
considerably more narros than the value identified by "¢”,
Therefore the value § should be the one to be used as an upper

bound for the error, having in mind to obtain the highest
possible precision.

4. Example of Application

~We'll apply the nes algorithm to the following example
taking as maximum admnissible error 5x10~3 (that is & must not
be greater than this value), «%=0.5 and k=2:

Determine arg min{f{(x)/fa(x): xeX}

with f,(x)=-x1+x2+40 i falx)=x1+3xp-18;

# belng a set of HZ, defined by the
folloming constraints:

x(*5xp § 96 ; xq*Ixp £ 62 ; xy+2xp § 46 ;
xy* x2 £ 31 ; Sxq*+2x3 £ 113; 4xy- xp £ 67 ;
3xq-5xp £ 29 ; Ixq+Txp 2 53 ; Ixy+ xp 2 23 ;
Xy - 2x2 2 6; X1,X230

-The decision space for this problem and the respective image,
given by f(x) and fo(x) are represented in figure 2.

-The images of R, B, C, D, E, F, G, H, 1, J (extreme points of
the decision space) by f;(x) and f5(x) are identified as R,
g, ¢, 0', E', F', G*, H', V', J' respectively. The value of
the points coordinates P=(xy,xp) and P'=(f(P),f(P)) for
P=A,B, .. ,J, are indicated in the next table.
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20 20
F GHI
10{E 101
D
0 20 %, 6 2 20 40 1’;
A B C D E F G H | J

(19,9 (18,113, 2)1(€,5) | (4,11 (6,18)11,1DI(14,16){C16,15)K17,14)

A1 B c|D |F F G | H I J'

(28,30{115,27M (1,29) |(3 39) l(l 9,47)l(42,52) (44,46) (44,42)J(43.39) 41,37)

-By applying "STEP 0" we determine ie?’ leading to the point R
of the figure oand since h0'5(9)>0, we have u.Bao:P, ﬁaﬁiﬂ,
op=f(R)=1.07. Next we determine xaﬂ and the point | of the
figure (iaﬂEI) is obtained, with hy 47 (1)20;

-According to “STEP 0", once fz(iaﬂ)*fz(iua) we proceed
to “STEP 1",

-Since (fl(iaﬂ)-fl(Rmﬁ))/(fz(iaﬂ)-fg(iuﬁ))e{uﬂ,aﬁ}, by

applying "STEP 1°, we  put  «l=ain{9/15,(R), (1)} = 9/15
and Xa] is determined (see figure 3).

-As the figure 3 ilustrates, it may be concluded that iogﬁd
(J'2(fa(2 1), f1( 1)) and since hy (X 1)<0 and hul(iog)’hul(iaﬂ)
oq becomes ol (uﬂi-u‘) and ’.‘uﬂ becomes xoé (that is )‘(aﬂf—J),
according to the algorithe, and we proceed to STEP 2,




(
A) /hW?X)

L

-Since fa(J)»fa(1) 14 we determine §, according to fomula (1)

obtaining @ value greater than the admissible maximum error,
thus returning the process to "STEP 1". Then we put:

al=ain{(f1(I)-F1 {1/ {F2(d)=F2(1)), £(I), F{1)}=F(J)=37/41
and  since (£ (-1 (17 (f{I)-Ta(1))elog, 08} X2 s
deterained.
-Ais the fost figure illustrates, i&?ld (that s

(fz(id?),fl(iug))id') and this tise we have th(iu?)=0.

Therefore we may conclude that Jax®,

5. Computational Experiments

-Several computational experiments were carried out Iin order
to compare the efficiency of the different methods referred in
the begining of this paper. For this purpose we have generated
several probless by using a pseudo-random number generator and
we have determined, for each method, the average values for the
nuaber of pivoting simplex operations, the number of iterations
and the processing times needed for obtaining the optimal
solutions.

-dith this test we solved 120 iinear fractional programming
probiems with the following characteristics:

14Seg table of the Tast page.




20 decision variables;
20 contraints defined by inequalities;

All  the coefficients of the decision wmatrix

have absolute values in 10, 10}, 208 of which are
negat ive;

All the independent terms were obtained from the
expression:

200..
b=2—d for i=1,2, . ,20
i 2

The coefficients of the numerator function of the
objective function, were generated in [-1000, 1000];

The coefficients of - denominator function of the
objective function, were generated in 10, 2];

25% of the generated constraints are of the type §;

For the bicriteria approach method, for the Isbell et
al's method and for the MODBIL, descrived in [14]), we

used for 20 the value suggested by Bitran et al [S] 13
(in general, this value feads to good resufts} and
the upper bound of the admissible error in the stoping-
-criteria has the value 0.005;

The initial pardmeters for the NODBIL, are obtained in
the same way as in the bicriteria approach method (by
application of the step 0 of the algorithe);

For the tests concerning the bicriteria approach method
and MODBIL, where the determination of the inicial
parameters og and g with 1{xg)>0 and n{eg)<0 was made

according to step 0 of the algorithm, we used k=2.

-These experiments, were made in conditions similar to those
required by Bitran [11] with respect to the characteristics of
the generated probless, but involving a greater number of
problems and without the aim of studying the correlations
between the obtained values and the geometric properties of the
problems, the exclusive goal being to determine the average
values and respective standard deviation.

-The tests were made in a microcomputer PC8-NCR, with the
algorithms implemented in pascal and using a turbopascal
compiler 3.01R of Borland Inc.

-Having in mind to improve the efficiency of the proposed
sethod we introduce in the algorithe the following modification

in the determination of the parameter, mi, in step 1 of the
algoritha:

19a0=<Tfy Fio>/<Tfp, Vi,
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-Let uﬂa'(ﬁ(ftuﬂ)-fl(ftaﬂ))/(fz(i“ﬂ)-fz(iaﬂ)) and T(R) such

that fi(ﬁ)-aﬂfz(ﬂ)-ﬁuﬂ and fl(i)-ugfz(*)-ﬁuﬁ. The choice of the

parqaeter, a', is done according to the procedure:

If Iln{uﬂﬂ,f(*uﬂ);f(*qﬁ)}’“ﬂﬂ then
ol =g

else

o mA(1T(EM (1-A( ))nin{f(iuﬂ), f(*mﬂ)};

with A(i)=}. Other choices suggested in [14], such as

Ai)=1/7(i+1) e A(i)=1/2', led to the same results and we
suppose that these are of interest only in problems of
dimension greater than the one allowed by the available
equipment in our study.

-This procedure was suggested by the acceleration techniques
of the bisection method when applied to the calculations of the
root of equation, 7{x)=0, as described in [14] namely in what
concerns NMODBIL and NMODBIN.

-The obtained results are shosn in the following table:

Average numbers {1t) and standsrd deviations {(5) of the numbers of pivotting
operations, number of iterations and processing time in seconds
Method pivatting oper%tions ”iterationac p:;lweasing h‘g\e
Charnes et 2 66 20 -- -- 579 16
Martos 40 6.8 -- -- 338 55
Franke) et al 67 15 47 25 46.5 8
Isbell et a) 47 95 33 0.6 36.2 6.3
MODBIL S0 9.2 2.9 0.4 393 5.6
Bicriteria ApproacrL 49 10 3 0.5 38 6.6

6. Conclusions.

-In what concerns the methods which enable to evaluate the error
incurred when the current solution is approximated by the iterated
point, we may conclude, from the computational tests, that there is
a certain competitivity between HODBIL and the proposed method.

-The inclusion of MODBIL in the tests (chosen among the methods
described in [14]) stems from the fact that it is the method closer
the one presented here and from the fact that, according to the

19




tests presented in [14], it leads to good results. The use of
polinomial interpolation - such as in ITBIN which .is the method
reconmended in [14] as being the fastest one - could also be
included in the proposed algorithm. However we think that this only
would have significant consequences in probleas of dimension which
we were not able to teat with the available computational means,

-MODBIL, as well as the presented amethod, leads to the same
upper bound for the error of the current solution. This may be
easily concluded by comparing figure 4, where the function n{a) is
represented, with figure 1. Indeed, from this comparison we can
establish the relations;

f (% )-f (%)
. . 1 “R 1 “B
W)=y Mogdehgps & =f(R); &=ty
: 2 o 2 o
f ]
T‘i\ ) ﬂs 4
% -~ iA)-cfz(iA)
W“B) ------ e
5
L :

- Although our method has been presented for the |inear case, it
con be easily extended to the nonlinear fractional programs dealt
with in [13] ond [14].

-As the computational experiments shows, the method introduced
by Hortos requires, in most coses, fewer pivoting simplex
operations than any of the other methods here referred, being
obviousfy more rapid. However it should be referred that this
method, although being faster, only should be used when the error
associated with the determined solution is not relevant to the
application under consideration.

-Although the Charnes and Cooper‘s algorithm is algorithaic
equivalent to the one of Martos, according to the proof by Wagner
and Yuan [10], the first one has in most cases values of pivoting
simplex operations and processing times greater than the second, as
a result of the changes in the decision space. These differences
are essentially originated by the suplementary effort that the
determination of the first admiegible asolution ieads to.
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Appendix
Lemma 4.1

Let (P“ﬂ) and (Poaﬁ) such that ﬁuﬂw, ﬁuﬁ>0 and
fz(*u.ﬂ)’fz(*“ﬁ); then:

f‘ (*a‘ﬁ)éfl ().(u.ﬂ) A fz(*aa)<f2(f(“ﬂ)
proof:

Let x*ex?, by theorem 3, we'll have:

ﬁaﬂw = fl(x')éﬁ(ﬁaﬂ) s 1) $1p (%)
I:Iuﬁ>0 = fl(iua)f,f](x.) A fz(i%)éfz(x.),

50 f1(iaﬂ)§f1(f<¢ﬂ) A fz(*ua)-f-fz(*mﬂ): since by hypothesis
fz(*mﬂ)’fz(*ua) we have fz(i“akfz(f(“ﬂ).

0
Lemma 4.2

Let (Pyo) and (Pyg) such that ﬁuﬂw, ﬁuam, ol )* 12 Ree)

Also assume (f|(ﬁaﬂ)-ﬁ(iua))/(fz(ﬁ“ﬂ)-fz(iuﬁ))ﬂ{aﬂ;aﬂ-
Then ag < & < ag.

2]




proof:

h, $f1(x)-m.fa(x) v¥xeX vce{f,B}, so in particular se have:
[ c

fl(*ma)'fl(%xﬂ)S“B(fz(*aﬁ)‘fZ(ﬁuﬂ))
and f](ﬂmn)-f|(qu)Suﬂ(f%(iuﬂ)-fz(ﬁaﬁ)).

Since by Lemmna 4,1 fz(guﬂ)-fz(xma)>0, se have:
“Bs(fi(ﬁuﬂ)'fi(*aﬁ))/(fz(ﬁuﬂ)'fz(*ua))éaﬂ and  since by
hypothesis (fg(ﬁaﬂ)-fg(ﬁuﬁ))/(fz(ﬁuﬂ)-fz(imﬁ))e{aa,uﬂ}, ve nay
conclude:

“ﬁ“fl(ﬁfﬂ)‘fl(*uﬁ))/(fZ(ﬁfﬁ)'fz(*aB))<“ﬂ M

From (fl(Kuﬂ)'fl(”uﬁ))/(fz(&uﬂ)'fz(”aﬁ))<aa we have &<xq, %0

we'll only need to prove that «pi&.

ﬁuﬁ>0 P f(iuﬁ)xxﬁ (*'), have into account ('), if f(ﬁuH)MmB

then ag<&.
Let us suppose that f(&,ﬂ)éuﬁ, then:
f](x)-agfz(x)éf](x)-f(&xﬂ)fz(x) vxeX,
oand in particular we have huﬁ(&mﬂ)éf](2uﬂ)-f(&xﬂ)f2(&xﬂ)-0 and

in uifu of ﬁmséhaﬁ(*aﬂ)' we may conclude against the hypothesis
thaf mmBso. So ag<f(2uﬂ) and from this conciusion, from (*) and
(**), it finally results that ag<&.

0
Lemma 4.3

Let (Py.) and (Pyp) such that ﬁaﬂm, ﬁ%m, folkeg)*f2(Rerg)
and &-nin{(f](&xﬂ)-f|(*uﬁ))/(fz(&xﬂ)—fz(ﬁuﬁ)),f(&mﬂ),f(iuﬁ)}.
Suppose also that (f|(2uﬂ)-f1(ﬁuﬁ))/(fz(ﬁxﬂ)—fz(iuﬁ))l{uﬂ,ﬂg}.
Then:
vxeX: he(x)She (% ) vee(R,B)
= fl("‘“ﬁ)éfl(x) A fZ(X)éfZ("‘aﬂ)
proof:
From the hypothesis we have:
fI(iac)-fI(x)éuc(fz(iac)-fz(x)) vxeX vce{A,B} (')
Let xel: f1(x)-fy(%y ) SR(fo(x)-fp(%y )) veeln,B} so we can
concluded that:
0% (g8 (fo (e )-f2(x)) Vee(R,B),




and for c=fi, we get Uﬁ(uﬂ-&)(fg(ﬂuﬂ)-fz(x)), ond for c=B, we
obtain Oﬁ(mﬁ-&)(fz(iuﬁ)-fz(x)). From Lemma 4.2 we know that
ogi®ing, therefore we have ag-&>0 and «g-8<0, so we may
conclude that fz(&xﬂ)-fz(x);ﬂ and fz(iuﬁ)-fz(x)sﬂ. From this

conclusion and from ('), finally follows that fy(xs)-fi(x)40.

8]
Lemma 5.1 . .
Let (Paﬂ) ond (P“ﬁ) such that huﬂ<0' h, >0 and

g
fz(f(“ﬂ)‘fz(ﬁ%) then:
(1) (-1 () )/ (19 )T ug) Ve Lot o) = LR R I 9D,
proof:
Let x*ext, Theorea 3, establishes:

ﬁaﬂﬂl = f|(x‘)§f1(XH) A fz(xt)ﬁfz(xH)
ﬁaﬁm = f1lxg)$1(x*) & folxg)§fa(x*)
Lot oxgn(fy (i)~ (o) )/ (f2lkg)- o ha)),  with  celn,B),
i"'huc(&%ﬂ)'huc(ﬁaa)' with ce{f,B},
(i) 1f c=A then ﬁuﬂ=huc(x5)<0 and by Theorem 4 we have
f'(x')§f1(iaﬁ) and fz(x‘)éfz(ius) and so we have:
f;(ﬁ%)§f1(x')§f|(ﬁ%) A fz(i%)éfz(x')ﬂz(iua)
or f1(iaﬁ)=f;(x') A fz(RuB)=f2(x'), therefore iuﬁex‘.
(ii) For c=B, we'll conclude in an identical way that &xﬂext.

Nevertheless in any case we'll have {)’(mﬂ,i%}nx*a‘
o

Lemma 5.2

Let x*eX*, xq. XgeX: fixg) §11(x*)$F1(xq) & folxg)$fo(x*)§falxg)
then:

folxg)=falxg) = xpgeX*

proof:

From 1/f2(xg) §1/12(x*)$1/1(xg) and f(x)=fp(xg) we obtain
17(xg)=17/15(x*) = f1(xg)/f2(xg) §F1(x*)/f2(x*) & xgax®

0
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Lemma 5.3
Let (Paﬂ)

12(8)* 200t

Lot Snmin{(f (o) 11 (Rag) I/ (Folh )~ F2(Re)) , F ), (R
and hg=0.

Then hphg (k) = hg hg (Reg)

proof:

(=)
Suppose that ﬁa=ha(ﬁuﬂ), then we have:

fi (f‘uﬂ)'fl (ﬁuﬁ) $&( fZ(;‘mH)’fZ(*uB))-

Since the hypothesis of Lemma 4.1 are held, we can conclude

(Puﬂ)' such = that ﬁuﬂ<0‘ huﬁ>0 and

that fz(guﬂ)-fz(iaﬁ)>0 and so we have;

(fl(imﬂ)-ﬁ(i%))/(fz(iuﬂ)-fz(iuﬁ))éui

and hence:

&=(fy (i‘uﬂ)'fl (iaa))/(fz(iuﬂ)-fz(ﬁua)) o h&("‘uﬂ)*ﬁ.(*“ﬁ)
(=) .
I f &s{f(iaﬂ)),f(iuﬁ)} then g 0. Suppose that ﬁa‘h&(*uﬁ)'

then hg20 (since &Sf(ﬁaﬁ) = ha(ﬂuB)ZU) and since by
hypothesis fig=0, we may conclude that &ﬂ{f(imﬂ)),f(ﬂua)} and so

&-(fl(&uﬂ)-fi(iuB))/(fz(imﬂ)-fz(iaﬁ)).
Therefore ha(*uﬂ)’h&(guﬁ)' thus completing the proof.

0
Lemma 5.4
Let (Puﬂ) such that ﬁaﬂ<0 and let &aR* such that &éf(&mﬂ)
and fig=0.
Then ﬁﬁ=hﬁ.($‘uﬂ) = i“ﬂext
proof:

Ki ﬁa’h&(*uﬂ) then, since by hipothesis &gf(&mﬂ) c:hafiuﬂ)ZU

and ﬁafo, we have ﬁa)o and by Theorem 3 we conclude that
f|(&mﬂ)§f1(x*) and fz(&mﬂ)éfz(x*). On the other hand we know,
by hypothesis that ﬁaﬂ<0' So from the same theorem we may
conciude that fg(x*)§f|(&uﬂ) and fz(x‘)éfz(&mﬂ). Therefore

xg€ X‘.

0
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ABSTRACT

Assume that a large sample of size n is available from a population having a Fréchet
distribution for maxima. From that sample we derive simple homogeneous predictors for
the largest value of the next m observations obtained from the same population. The
predictors are obtained by splitting the ordered sample in two blocks and using their
averages. High asymptotic efficiency of each simple predictor with respect to the best
homogeneous predictor is obtained and is independent of the number m of the next
observations. Homogeneous prediction region and the best homogeneous predictor for
a censored right sample are also derived.
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1. Introduction

Let (X1, X2, ..., X») be an observed sample obtained from a population with
known distribution, except possibly for some parameters. The prediction problem
is, from the observed sample, to obtain a statistic forecasting, a function of the next
m observations {Xni1, Xn+2,..:s Xntm)-

The measure traditionally used in the statistical theory of prediction is the
mean square error between the predictor f(X,, Xz, ..., Xa) and the value to be pre-
dicted Z = ¢¥(Xn+1, -y Xntm), M.S.E.=E|[(f — Z)*). This is the criterion for choice
of the predictor that we will use.

Tiago de Oliveira (1966,1968) gave the general solution for the best (least-
squares) quasi-linearly invariant predictor and lower bounds for the mean square
error of prediction. Tiago de Oliveira and Littauer (1976) formulated quasi-linearly
invariant predictors for the minima of the Weibull and the maxima of the Gumbel
distributions.

In the present work we are going to consider only homogeneous prediction
for the Fréchet distribution .

Recall that a statistical function ¢ is said to be homogeneous if

‘p(ﬁxl: yﬂxn) = ﬂ‘P(le ...,X") (ﬂ > 0)

As some examples of homogeneous statistics we can consider the largest
value, the minimum value, the average and more generally linear functions of the
order statistics.

The homogeneous function we intend to predict is Z = max(Xp+1,-., Xn+m)

owing to its interest in practical applications.




2. Homogeneous prediction

2.1. General results

From the observed sample (X3, X3, ..., Xp), with known Fréchet distribution
with a scale parameter, Neves (1987) obtained the general solution for the best

homogeneous predictor as

15 48"V E (821, .., Bn)im (B2, s )
[o°dBprL(Bzy, ..., Bzn)

f(zl; ...,z,,) =

)

where £(z1,...,Zn) and pm (21, ..., Z,) denote respectively, the marginal likelihood of
(X1, ..., Xp) and the conditional mean of Z.
Recall that the Fréchet distribution for largest values, with known shape and

location parameters, x = ko > 0 and A = Ag (Ao = O for simplicity), is

F(z;5)={ exp(=(3)™) if £20 -

Thus if X, Xa, ..., X are n i.i.d. random variables following (2) the homo-

geneous predictor assumes the form

“mr(")
(nMp)V*oT(n — 1/k0)

fn=f(Z1, . 20) =
with
pm =mY*T(1-1/k) and M, = %Zn:z‘-—"“ (k0 > 1).
1
In our previous paper, Neves (1987), we proved that

\/'—mo(‘{—" ~1) 4 N(0,1).

m
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2.2. Simple homogeneous predictors
In Neves (1987) we have considered the simple homogeneous predictors:
a(ko,m)X, b(xo,m)Q and c(ko,m)M,

where a(xg, m), (%o, m) and ¢(xo, m) are coefficients that minimize the mean square
error of each of the predictors about the conditional mean g, D,’.,m land X, Q and
M,’, are the sample average, the sample quantile for probability p and the sample
largest value, respectively.

We have obtained a zero efficiency for ¢.M,, ( let us note that var(M,) =
n?/* (T(1-2/x0) —T2(1—1/K0))). About the two other predictors we have obtained
reasonable efficiencies, independent of m.

A short table of some of those values for the predictor a. X

%o 3 4 5 10
eff(a1.F) 024 034 041 051

The asymptotic efficiency of b.QQ is maximum for the quantile of probability
p = 0.2; its value is 0.6476. For this predictor the efficiency is independent of xq
and m.

The papers of Kubat (1975,1982,1984), Kubat and Epstein (1980) and Hiisler

and Schiipbach (1986) lead us to consider the simple homogeneous predictors

Ly=a1 Xy +aXa and Ly =5Qy+ 52Q:

! Let us note that

+oo +co
M.S.E.(f):/ / (Z - £)*L(21, ) Zn}2)dZy..dZndz =

+co +co +oo +oo _
/ / (Z—p.,,.)’ﬁ(zl,...,z,.;z)dzl...dz,..dz+/ / (f=8m)?L(21, .., Zn} 2)d21...d2n

= 0.2..-" + D:m(f)

and, a8 o2, ie a constant, minimizing M.S.E.(f) is equivalent to minimize D7 ,.. (f)




where X; and X3 are the averages of two contiguous blocks of a convenient splitting
the sample of the ordered observations, a; = ai(xo,m); az = az(xo,m); b =
bi(xg,m) and by = ba(xo, m) are determined like for the previous simple predictors.
The criterion for selecting the two blocks is that one of maximizing the
asymptotic efficiency of L; and/or Ly about the best homogeneous predictor f,.
Let us denote by X(;) < ... < X(,) the order statistics corresponding to
X1, ..., Xn obtained from (2).
Let X(l) < .. < X(,) and X(r+1) < .. < X(,,) be the two blocks, with

n

r=[np],0<p<landf1=zﬂﬁﬂandfg=—2—=ﬂL

T [0
n-r

The asymptotic distribution theory for the averages of the blocks of order
statistics can be found conveniently summarized in Kubat (1982), from the results
of Chernoff et al. (1967). '

@1 = X{(jnp)+1) 80d Q2 = X{(ng}+1), 0 < p < ¢ < 1, are the sample quantiles,
p and ¢ being also selected by maximization of the asymptotic efficiency of Ly about

fn-
From Kubat results (1982) we have, for large n,

= 1

with ?T = [?1 <X_2], [lT = [#1 [Jz] and
V= o? o012
012 03

1 [xe 1 /“"’
= - zf(z)dz; = — zf(z)dz;
m= [ et = [ er

with

Xp
ot =212 [ 5 ez~ 4+ Gy — (0 - )

2 L T e — s+ (s - )l
F= 15, z)dz — w3 + (2 — X,)?Pl;

013 = (#2 - XP)(Xp - #1)-
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Thus, the mean square error D3 . of L; can be written as
Dyzt,m(Ll) = E[(alfl + 0272 - l‘m)zl =

= var(a1 X + a2 X2) + (@11 + azp2 - pm)® = a"Va + (aTp - pm)?
with T = [a1 az].

The limiting values of a that minimize the mean square error are

a1 =p #103 — #2012 as = p #20? — K012
= fm =
pio? + pudod — 2u1p301, " pdo? +ulod — 2p1pa010
being then
2
var(f, b
eff(Ll) = ( fl) m

var(a; X1 + a; X3) ~ k:.aTVa’
The asymptotic efficiency is also independent of m and much better than
that one of the previous simple predictor based on the sample mean.
For m = 4 (for other values of m only the coeficients a are different ) a short

table of the efficiency of L, is

Ko P a; az eff

25 .30 3.1039 .0491 .9120
3.0 .37 2.4399 .0770 .9214
40 .36 1.8324 .1058 .9323
5.0 .36 1.5559 .1168 .9383
6.0 .35 1.3954 .1296 .9422

8.0 .35 1.2259 .1363 .9468
10.0 .34 1.1300 .1470 .9494

Let us note that for the different values of xg, the splitting in blocks is made
about the quantile p = .36.

Now we will go to consider the predictor

Ly =5,.Q)+b2.Q2 with @ = X(["P]+1) and Q; = X([nq]+1);

Q1 and Q; are jointly asymptotically distributed with bivariate normal distribution,

Cramér (1946) and Mosteller (1946).
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Denoting by QT = [Q1 Q2] and xT = [xp x,] we have

1 A C
Q~N(x,;V) where V_[C B]
with
1- 1- -
A=”(2 p). =q(2 9. aq c=-PL-9
F*(xp) F*(xq) f(xp) f(xq)
The minimun mean square error is attained for the limiting values

Xp-B — x¢-C Xq-A — xp.C

by =

and by =

B B .
mA.x3+Bxg—ZCxpxq mA.xg + Bx2 — 2Cxpxq

The asymptotic relative efficiency is independent of m and of xo and its

maximum value is .82016 for the quantiles p = .07 and ¢ = .36.

3. Homogeneous prediction region for the Fréchet distribution

Let us recall that a prediction region is determined by an indicator function
(21,22, ..., Zn; z) taking the values O or 1 depending on z € R(z,23,...,2n) or
z € R(z1,22,...,2p).

Tiago de Oliveira (1966) has derived the prediction region in the quasi-linear

case; in the homogeneous case ¢ takes the value 1 on the set of (21, ..., Zn; 2) where

/0 * 4881 L(Bz1, ..., Bz, B2) > C /0 * 48"V (Bz, ..., Bn) 3)

where C is such that the prediction level w satisfies

/R.s-(nﬂ)g(%, %’- ’;.—" g)dzl...dz,dz =w.

For Fréchet distributions, the prediction region is then:

komz " "1l(n + 1+ 1/x) C(n - 1)!
(nM + mz"‘ﬂ)""'l"'l/"o =7 anMn"

(4)
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where M = L 3" g%,

n t

Let us consider ¢ = TE" . The region (4) can be written as

¢1+1/uo

'
(1 + ¢)n+l+l/m; 2C.

. 0 n—1)!
with C' = Cnorln+l+l7noi'

4. Homogeneous prediction for right-censored large samples

Let us suppose than only the first r observations X(3, ..., X(y), (r = [np],

0 < p-< 1), of a sample of size n obtained from (2), have been observed.
For the censored sample we have the marginal likelihood
—ro- —mo ~ — ! LN
£ty 20) = R (21.30) 707 exp=(ET 4t 872 4 ) S (=)

8o the general solution for the best homogeneous predictor in the censored case is

o Jy > ABB™T™ exp(=B~"0 (L] 57 + (r = =) (1 = ~(Ar) " )nr
o dpp=T exp(=f " (] 5 + {7 — Dar )1 = emipenl s

(5)

fz1,y e 2r) =

Developing (1 — e~(#=r)7*°)"~r and by a change of variable in the integrals,
we get the expression for the best homogeneous predictor for the Fréchet distribution
based on a right censored sample

pnD(r) 020 (1) (7)) (0] 270 + (r +5)z7=0) "

R T VR 5 Y Gy (i e s e

(6)

We wish to express our thanks to Prof. Dr. J. Tiago de Oliveira for his

support, sugestions and improvement of the present work.
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SOME SILHOUETTE-BASED GRAPHICS
FOR CLUSTERING INTERPRETATION
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ABSTRACT

Silhouettes were developed as a graphical display for nonhierarchical cluster analysis. They
are based on the ratio between the tightness of a cluster and its separation from other clusters.
A possible extension is to represent for each object both these characteristics in a two
dimensional graph.

The same technique can also be used with fuzzy clustering, making use directly of the fuzzy
membership functions to measure the tightness of the links of each object with its principal
cluster and its neighbour.
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1° _Intredyction

Visual representation has always been an important means
of communication. Nowadays many other mathematical tools, such as
analytical formulas and computers, are at the disposal of the
researcher to describe phenomena in a precise way. However,
graphical representation 8till possesses a very suggestive power
that no other mathematical desacription is able to provide. The
reason is that a graph yields a global view of the phenomena
together with all the relations between its partas. This is

clearly an advantage over moet formal mathematical models.

No wonder that for cluster analysis, which is sometimes
defined as the art of discovering groups in data, graphical
representation is a much cherished tool. It may even be the main
tool in examples where all objects can be represented in a two-
dimensional space. In multidimensional situations clustering
algorithms are necessary, but graphs are 8till very helpful to
illustrate the results and to reveal some features which may be

the start for a further investigation.

In hierarchical clustering, dendrograms (see e.g. ref. 1
to 5] represent the relations between the partitions at different

levels, the merging sequence, and the level of each partition.

For nonhierarchical clustering, a representation by means
of silhouettes was recently proposed by Rousseeuw (6].
Silhouettes are based on the ratio between the distances of an

object to its own cluster and to its neighbour cluster.




In the present note, silhouettes will be extended in two
directions: a two-dimensional representation for each object
(Section 3) and a modification for fuzzy clusters, either ag a
one-dimensional (Section 4) or as a two-dimensional graph
(Section 5). Some furthef considerations and conclusions are

given in Section 6.

2° Recallinx sjlhouettes

Silhouettes were developed by Rousseeuw [6] to evaluate
the quality of a clustering alloqation, independently of the
clustering technique that was used. Only two streams of
information are needed: the partition of the objects into a
number of clusters (at least two) and the matrix of proximities

between all objects.

The silhouettes are then defined as follows (we restrict
ourselves to dissimilarities, although one could also use a

collection of similarities between objects):

-let D(i,j) be the dissimilarity between objects i

and j;

-let a{(i) be the average dissimilarity of object 1i,
which has been allocated to cluster A, to all other

objects of the same cluster:

ID(1,3)
a(il) = j-——m—
na-1
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Fig.1:

with J e A and na = number of objects in A. It is

assumed that na > 1.

i

-let d(i,C) be the average dissimilarity of object

of cluster A to all objects of any cluster C,

different from A; hence

ED(i,J)
4¢(i,¢) = j—ru—
Nc

with j € C and nc = number of objects in C.

-let b(i) be the minimum over all clusters C of

d(i,C), corresponding to the neighbour cluster B (see

Figure 1).

An

illustration of the elements involved in the computa-

tion of a(i), where the object i belongas to cluster A (from [6]).




-let, for na » 1,

a(i)
s8(i) = 1- if a(i) ¢ b(i)
b(i)
(1)
b(i)
= -1 if a(i) 2 b(i)
a(i)

for na = 1, 8(i) = 0 by convention.

It can be seen that always

-1 < a(i) < 1. (2)

An 8(1) near +1 means that the object i has a small
average dissimilarity to objects of the same cluaster and a high
average dissimilarity to the neighbour cluster, and hence to all

other clusters. A value near -1 expresses the opposite.

Having computed s(i) for each object of the data set, it
is now possible to draw the ailhouette of each cluster. For each
object of that cluster, one draws a horizohtal 1line with length
proportional to s8(i), pointing to the right whenever s(i) is
positive and to the 1left otherwise (although this last part of
the representation can be deleted as it is of less interest). All
these lines are drawn below each other in decreasing order of
magnitude. Each cluster has its own silhouette, the height of
which is proportional to its number of objecta whereas the width

expresses its relative tightness.
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the extremities of the set; the smallest values characterize
objects near the interface between the clusters. The largest
value is 0.90 for both clusters, and the smallest is 0.52 for the
first cluster and 0.35 for the second. One can also calculate an
average silhouette width for each cluster and for the entire data

set; in our example all these values happen to be 0.79.

If a partition into three groups is performed (Fig.3),
the first cluster remains unchanged whereas the second is split
up in two parts. The silhouette of the firat cluster is very
similar to the one in Figure 2: not only the general shape is
similar, but also the ordering of the objects. The s8(i) values
become alightly smaller because b(i), the average dissimilarity
to the objects of the nearést of the other two clusters, is
usually less than the average disasimilarity to the big cluster in
Figure 2. This yielda an average s8silhouette width of 0.75, as

compared with 0.79 in Figure 2.

As for the two "half" clusters, the changes are of course
more striking. Although for each object i the wvalue a(i) is
decreased, at the same time b(i) becomes smaller still, so
a(i)=1-a(i)/b(i) decreases. This results in an average silhouette
width of 0.50 for cluster 2 and 0.63 for cluster 3, as compared
with 0.79 in Figure 2. The overall average silhouette width of
all three clusters is 0.65, or about 20% less than in the case of
two clusters. Therefore, the overall average silhouette width

givea some indication about the "best" number of clusters.
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Fig.3: Silhouettes of basic model: 3 clusters.

Unfolding silhouettea in two dimensions

Silhouettes are based on the evaluation of two functions




for each object:

the "tightness" a(i)

the "separation” b(i).
Instead of calculating the ratio of these two functions, it is
also possible to simply plot these functions in a two-dimensional

graph, using, say, a(l) for the x-axis and b(i) for the y-axis.

As both a(i) and b(i) are always positive, only the first

. quadrant of the (x,y)-space is used. Looking for the relation

between the 8(1i) values and the (a,b)-plot, it can be observed

qh:1

1

s(i)

-Hsiy (o

s(i)= -1

Fig.4: Relation between separation/tightneas and silhouettes.
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that all objects with the same s(i) values lie on a straight
line, starting from the origin and satisfying one of the

following equations:

b(i) = (1+8(i)) a(i) if ~1¢8(i)¢0 (3)
1
b(i) = a(i) if Os¢s(i)«1 (4)
1-8(1i)

From these equations it can be seen that objects with
8(i)=-1 will be represented by points on the a-axis. Objects with
8(i)=0 correspond to the equation b(i)=a(i), and will be
represented by points on the 45° line. Objects with negative s(i)
will lie below that line, whereas objects with positive s(i) 1lie
above it. Objects with 8(i)=1 end up on the b-axis. These
relationé are represented in Fig. 4. It should be observed that a
plot can be drawn for all the objecta of a data set as well as

for the objects of each cluster sBeparately.

Fig. 5 and 6 s8how these plots for the example with two
"natural” clusters discussed in the previous section. Fig. 5 is
very typical of a good clustering allocation. The plots show a
rather narrow concentration of the tightness a(i) and a much
larger dispersion of the separation, with most objects having a
b(i)/a(i) ratio larger than two. The only object with b(i)/a(i)
smaller than two is located near both clusters. It almost forms a
bridge between them, as can be deduced from the fact that a(i)

has one of the largest and b(i) one of the smallest values.

In the three clusters case (Fig.6) things are clearly

different. The first cluster still resembles that of the former




case, but the two remaining clusters have much smaller values of
b(i), which in turn are much nearer to the a(i) values. This

could be a first indication that these clusters should not have

been separated.

TWO-DIMENSIONAL TICHTNESS/SEPARATION PLOT
1 .

GENERAL PLOT

PLOT OF CLumTRS: B
Ao /A .1

Fig.5: Basic model: two-dimensional hard representation of 2
clusters.
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THO-DIMENSIONAL TIGHTNESS/SEPARATION PLOT
L A g e Y Ty Ty T

GEMERAI. PLOT

DT @ CLIRR: @ MOt OF CLUVER: 3
nra A

Fig.6: Baamic model: two-dimensional hard representation of 3
clusters.
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4> Usinx fuzxv membership functions

The goal of fuzzy clustering 1is to express, for each
object, its relative membership to each cluster. Most fuzzy
clustering algorithms [see e.g. ref.7] make use of average dis-
similarities. By definition, the sum of membership values of each
object to all clusters always equals one. It is also customary to
consider the nearest hard claasification, allocating each object
to the cluster for which its fuzzy membership is largest. There-
fore it is possible to define new "tightness" and "separation®
factors based on membership functiona, keeping in mind that the

latter reflect similarity rather than dissimilarity:

a(i) = 1 - u°(i) with u®(i) = u(to,i) = max u(t,i) (5)
t
b(i) = 1 - u®*(i) with u®®(1i) = max u(t,i) (6)
tidts

in which the membership functions must satisfy the relations:
u(t,i) 2 0 for all 4 and t
L u(t,i) = 1 for all i. (7)
t

From (S5) and (6) we see that

u®(i) 2 u°*(i) (8)
and hence we always have

a(i) ¢ b(i) (9)
resulting in O < 8(i) ¢ 1, excluding the possibility of negative
s8(i). Apart from this last aspect, the s(i) behave similarly to
what was seen in section 2. This is confirmed by Fig.7 which
shows the fuzzy silhouette plot of the two-cluster example of

that section: the general shape is very similar to that of Fig.2.
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The only difference is

larger than the hard s(i) (which,

that the

the actual fuzzy algorithm used).

fuzzy 8(i) are generally a bit

of course, depends very much on
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3° A two-dimensional plot with fuzzv membership functions
As in the case of the original silhouette, it is also

possible to unfold the fuzzy membership function in a two-

dimensional plot. Compared to s8ection 3, there are two main

differences:

1° due to relation (9) all pointe will 1lie above the 45°

line;

2° relation (7) inducee a series of constraints which were

absent in the hard approach. As we will see, these depend on

the number of clusters that is considered;

a) for 2 clusters, relation (7) becomes

u®(i)+u®®(i) = 1

and through (5) and (6) we find

a(i)+b(i) = 1. (10)

This relation means that all objects in a two-cluster

system will be represented on the straight line going

from (1,0) to (0,1) (see Fig.8).

b) for 3 clustera, relation (7) becomes

u®(i) + u®®(i) + u(t,i) =1

or u®(i) + u°°(i) s 1
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which through (5) and (6) gives

a(i) + b(i) 2 1 (11)

and as u®®(i) 2 u(t,i) through (6) we alaso have

u® (i) + 2u®*°(i) 2 1. (12)

Using (5) and (6) this yields

1-a(i) + 2(1-b(i)) 21

b(i) ¢ 1 - % a(i). (13)

oo clusters

Fig.8: Two-dimensional plot with feasibility regions as function
of number of fuzzy clusters.




Relationa (11) and (12) force all objects in a three-
cluster configuration to remain between two straight
lines atarting from the y-axis at the value b(i)=1 and

with slopes -1 and -% (msee Fig.8).

c) for k clustera, relation (11) is atill valid whereas

relation (12) becomes

u°(i) + (k-1) u®°°(i) 2 1 (14)

which upon consideration of (5) and (6) becomes

1 - a(i) + (k-1)(1 - b(i)) 2 1

80

b(i) ¢ 1 - 1/(k-1) a(i). (15)

Hence the 1lower and right hand feasibility limits (11)
and (9) remain unchanged whatever the number of clusters; the
upper limit starts from the point on the b(i) axis with value 1
and has a negative slope proportional to 1/(k-1) (see Fig.8).
This upper 1limit coincides with the 1lower 1limit in the case of
only two clusters (k=2) and tends to an horizontal line for an
infinite number of clusters (k=00). It can further be observed
that whenever points are represented on the lower 1limit, i.e.
when the sum of a(i) and b(i) is equal to one, these objects have
zero membership to all clusters but the principal one and the
first neighbour; pointa represented on the upper limit line
corresponding to the number of clustera, indicate that equation

(14) haa to be considered with an equality sign and hence that
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clusters.
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the corresponding object, apart from its membership to its
principal cluster, has an equal membership to all the other

clusters.

An example is provided by the Ruspini data [8], which
contain four rather well-separated clusters. A partitioning into
three fuzzy clusters shows two well-characterized clusters and a
third one that is not so tight (Fig. 9). The partition in four
cluaters gives an improved image for all clusters, confirming the

existence of four "natural clusters” (Fig.10).

6° _Conclusions

Graphical representations are very useful to get a global
impression of a clustering. It was shown how silhouettes could be
extended to a two-dimensional plot, providing some new
information such as a distinction between bridging objects and

outliers.

A similar plot can be constructed from fuzzy membership
functiona. There all points remain within a triangle, of which
only the upper boundary is a function of the number of clusters.
Moreover, the position of each object within this triangle tells

a lot about the cluastering characteristics.

A8 seen from the examples, the above graphs can even be
drawn with a plain line printer. This allows the implementation
of these graphical representations in almost any computer

environment.
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clusters.
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