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LINEAR FRACTIONAL PROGRAMMING

A NEW BICRITERIA APPROACH

Jodo C. N. CLIMACO

Departamento de Engenharia Electrotécnica
da Faculdade de Ciéncias da Universidade de Coimbra,

3000 Coimbra, Portugal

and

Domingos M. CARDOSO

Departamento de Matematica
da Universidade de Aveiro,

3800 Aveiro, Portugal

ABSTRACT

Thelinearfractional programming problem is formulated and a new algorithm for solving

this type of problem is presented. In eachiteration of the method one proceedsto a very
narrow evaluationof the error incurred by the current approximation to the optimum. This
error may be obtained by some parametric methods,but in our algorithm we use a distinct
analysis based on a suggestive graphical! bicriteria representation. Some computationat
experiments comparing the algorithms were carried out.



1. Introduction

-The aim of this work is to introduce a new algorithm to solve
linear fractional programming problems by using a bicriteria
linear programming approach.
-The linear fractional programming problemas usually admit the

following formulation:

min (f(x)=fy(x)/fo(x): xeX} (Py)

where:

fy(x)ecytx+By, cya", Bye for i=1,2

X={xeR"; Ax=b, x20}

AieA*®X"  bef® and a,nelN with a<n

¥2@ and compact

-Let us also suppose that f,(x)20 and fo(x)>0 vxex.

~{t should be noted that in the published articles on linear
fractional programming, in addition to the formulation given

for (P,), only the condition fo(x)>0 YxeX is required instead

of the conditions here imposed: fy{x)20 ¥xeX and f(x)>0 vxex,

-However, in practice, if Sx‘eX: f,(x'}<0 the problem in

question can be easily transformed into another equivalent
problem, in the sense that it admits the same set of optimum

solutions and observes the general given formulation.
-In Climaco et al [7] and Nykowski et al [6], it is suggested

the transformation of (P,) into a bicriteria problem:

ain f, (x) 5 max fy (x)

xe kK xe X

or It be: (Po )

Min F(x), where F(x)= Po
xeX f(x)

-Hith this formulation, we intend to fix the set of non
dominated solutions of this problem. The meaning of non

dominated salution is the following :

-Let x ,,x9eX, we say that x, dominates x (x,Dx2) iff

F(x ,)<F{x), where:

F(x, )<F(xo) iff f(xy) $4 x2) ,-f20xq) $- falxg) and F(x, )#F(x2).

-Identifying by & the set of dominated solutions, i. e,

 



Xpzixek: dx'ex, x'Dx}, the set of not dominated solutions,

identified by ky, is given by kySk\kp.

-Throughout this paper we wil! designate the set of optimum

solutions of (Py) by X*, that is, X*s{x*ex: f(x*)Sf(x) ¥xek}.

Theorem | !

If for the problem (Py) fy(x)>0 ¥xeX, then Xyor™.

Theorem 2

There is at least one point x*ex* which is an extrene point

of XK.

-Based on theorems 1 and 2, it is easily acknowledged that
from the solution of linear programs of the type:

minthy(x)=f;(x)-afolx): xeX} (Po)

where the parameter o& takes suitable values, we end by getting
the optiaum solution to (P;). He will Identify by %, an optinal

a

solution (extreme point) of the program (P,) and by My the

respective optiaal value (hyahy(2).

-~As in the presented method, the foundation of methods -such
as the one of Martos [1] (in which the objective function
(o.f.) changes from simplex iteration to simplex iteration),
the one of Isbel! and Narlow [3], the one of Frankel, Novaes

and Pollack [4] 2 and the methods described in [13] and [14]-
lies upon the solution of linear programs (Py), with the real

parameter &% varying in a suitable range of values.

-The methods described in [13] and [14] are dedicated to
nonlinear programming and are based on the application of the
classic bisection-method to the determination of the root of

the equation, nla)=0 with nlaj\=h,, where » is a concave
picewise linear function,
-Other approaches, either have other essential ains, different

from the solution of (P;), as it is the case for the method

introduced by Wolf [12] (more concerned with the analysis of
this prograss than sith solying the problem) or are based on

the classic method of Charnes and Cooper [2]. In any case they

"Taking into account the formulation, given to (P 1) and (P>) we remark that:

if Sx'eX: £1 (x°)=0, then x'eX*, however may Sx'eX: f;(x')=0 and x'eXy,

“See the version of this method presented by Nykowski and Zolkiewski [6] that solve the

linear fractional programming problem using an approach like (P2),

 



present certain computational disadvantages comparatively to
the ones already indicated.
-The bicriteria approach method although could be considered

in some aspects similar to some of the referred methods, aainty
the ones based on the bisection-method (because, like them, it

is possible to calculate a rather narrow value of the error

Incurred by the approximation to the optimum given by the

point obtained in each Iteration) ts quite different from all

of them in the way how the parameter « is obtained. The fixing
of this parameter during the iterative process, is always made
from two suboptinal solutions with values of the numerator and
denominator functions of the o.f., higher than and Jower than

the ones obtained for the optimum solution to (Py),

respectively. The development of the method enables the images
of these points in the objectives space of (Pz) to become more

and more close, but continueing to frame the image or images of
the optimum solution or solutions of (Py) in this space.

2. The bicriteria approach method

-The method we are going to present, can be considered related

to "NISE* > studied by Cohon [6], with respect to the way it
determines the error incurred when it approximates the optimus
by the iterated point.

cLet G:A[----rA2 such that. G(x)=(fo(x),fy(x)), the

application of the method leads to a sucession of special
bidimensional bisections in order to determine a gradually
more “tighter” region to which the image by "G", of the
searched optiaua, belongs.
-Before presenting the new algorithe it Is convenient to

introduce some results in order to facilitate the proof of its

convergence.
-The theorems 3 and 4, to be presented, set up the fundamental

results of this method and they will enable to make the proof
of the convergence (enunciated in theorem 5).
“With the aim of simplifying the theorems proofs several

lemmas are presented in appendix; 5.1, 5.2 and 5.4 have the
objective of establishing the criteria correction for stopping
the algorithm and 5.3 is used to avoid the redundancy in the
confirmation of certain conditions.

-From now on (PO will only be defined for positive « (20).

3An interactive multiobjective linear programming method.

 



Lemma 3.1

vx, solution of (P,), and vx*ex* the following system of

inequalities is valid:

£4 (x*)-ccfo(x* )2hy(%,)

£4 0x*)- £08, f(x")$0
The proof is trivial.

Theorem 3

Vk, solution of (Py), ¥x"ak* we have:

Ca) hyCX,<0 => fy Cx" )S14(K) & foxSf0(x,)

(b) hg(K20 => £4 0x" )21 (Ky) & folx*)2f2(K,)

(c) hy(%, 220 => f(x" )=1(5,)
proof:

(a) hy(<0 ee a-f(%,, 190

From lemma 3.1, we have:

~ £5 Cx" )tafg(x* $1918,(ar f(%,))
£4 (x*)~1(5,) fo(x*)50

(ox~f (5,)) £2 (x*)8(a-f(%,)) Fo(Ky)
and since by hypothesis a- f(x! )>0 we say conclude that

f(x" )Sf9(k,). From this result and from the 2°¢ inequality in

the above system, we may conclude: fy (x*$4 (K,),

0
(b} proof as in (a).

(c} proof is trivial,

Theorem 4

Let (Py) and (Py_) such that hy.<0, hag, f2(Sqq)#F2(Rag)

and (11 (Ra)=f (Rag) / C12 hag) f2og)? fgog)
Let Bmmind (fs Ra)F 1 Reg) )/12Keg)f2org)) f(xa), f(xp)}.

Then £1 (Rg) S14 (%5)S14 Rag) and 12 (Rag) $25) S12g)
proof:

4Have in attention that Re is the optimal solution of (Ps).

 



-By the hypothesis f;) (x.)-f) (x) S&C folk,)-folx)) wxex (*),

-Since® Fy (Rg)-f1 Rag)20, f2(85 )-fa(hyug) $0, 620 © and the
particular case of the relation (*), for x*Koes we get:

fe)- fy ene) SA012 (Re)-f2Rag)),

-We can conclude that £2(%5)-f2 (ag) 20. Also the relation (*)

for the particular case of x"Rea becomes:

f(y-F4 (Reg) SEC Fn (Rg)-F2 Rena),

and so its easily concluded that 4 (Re)- fy hyn) $0, thus

completing the proof.

0
~Since we already have the necessary results for justifying

the bicriteria approach method, this will now be described by

the corresponding algorithm, where ¢ identifies the upper bound

for the error tncurred when the point obtained in the current

iteration is taken as an approximation to the optiaum, and x*

identifies this approximation determined for ¢ not greater than

the adaissible error,

~if the value of ¢ associated with the approximation is zero,

this means that the current point belongs to x* and so it is an
optimal solution to the problem (P,),

Algorithm:

0. Choose 3 real positive value for «9° and choose a real value not less than | for k;

Determine X9;

If hpr0 then begin x" Xp; 0;STOP end;

iffpO then begin

open; Keag%pi XqKp; repeat

oRIK;

Determine X,;

iff=O then begin

x"Ks e-0; STOP
end

UNtHT Ny,(Xpe) 2.0;

BAe, RopeXo

end;

58y the lemme 4.3 in appendix.

5\n according whith the lemma 4.2 in apendix, havingin attention that p70.

 



ithp70 then begin

aga?Rak9: age(Xp);
Determine Re,

if h., =O then begin
oA

Xe Sergi0; STOP
end

end;

If folhy. =fa(R.) then begin

“ " XK 2-0; STOPasf ’

end;

i€-0; go to step 1;

VW (fy Gaa)-f |iaathen

egin

x"€x' such that x'e {arg min{fRoya) , Roe) H:

c€0;

STOP
end;

ie i+} ; Memin(fy (Rey)-1 4 (Rerg))/(F 2Roag12(Roeg)).M Rugsf Rang}:

Determine Xi ;

If fyi= O then begin ERI; t©0; STOP end:

it Rie NosBong ) then begin xCha e-0; STOPend;

if R.i< 0 then begin RapRal ept-c1!: go to step 2 end;

if hi > O then begin Rage3a ; Gapeoel; go to step 2 end;

- 112g=12( Rog) then begin ve Rog #0; STOP end;

cf,( Retg)/F2( Roya )- mint(Roy ),f( RapHL:

lf e>admissible error then begin

go back to step 1
end

else begin

x"€-x' such that x’«{arg min(f(Rg).f( Roeg)}}; STOP
end

end(of algorithm).

Theorem 5

¥Yo°eR*, vke[1,+CO[, the introduced algorithe determines the
solution to (Py) after a finite number of steps.
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proof:

Aoplicgtionof0;.
-In step 0, if figeO then by the theorem 3 (c) Xper”,

Otherwise hip?0 or hp<0.

(i) Suppose that higcd.

-Recording to the algorithm it results that agen®, ag*p,

a= f(Xo)/k and thence we deterpine x if h,,<0 then we do

a=f(%.)/k and again we deteraine %,. This procedure wil! be*

repeated until h,,20.

-It should be noted that h,,<0 = £618),?

ke being an extreme point calculated by the method

Ianediately before x ithenever h,<0, this

means that the extrese point Ry decrease the

objective function with respect to Re Therefore

the fact that the number of extreme points of X¥ is
finite, after the execution of a finite number of

these procedures, entails that we have hy.20.

-If h,=0 then, once again by theorea 3 (c) it results that

xex*, otherwise, according to the algorithe, pyre and Re*%,

(ii) Suppose that hyo.

-fAiccording to the algorithm we get ag-n°, Kap*ps age f(X9) and

thence we deteraine Keg:

~-h ¢ i X¥,)s 4Pag? since Pog (%p) 0 and PagSang ’*) WxeX,

-If hyp" then like before, by theorem 3 (c) it results that

* z
Rage h '

-Nevertheless if the optiaua is not found neither by (i) nor
by (ii), we'll have, in any case, h, <0 and h, >0 and by theores

mA m5
3:

RogSt(x81(ya) f2Bag)Sf2(x"812 (Sq4)

-If 12 Berg) *f2 Gag) 8 then Raget™, otherwise go to step 1.

“Have in attention thet k2 1,

8By lemma5.2 in appendix.

 



STEPS
-If (Fy Raggy Reng) 1/42(ern) F2 (Reg) 0 {org 049} we shay

conclude that Bagitagtnk™sd, so X*>{arg mint (Ryo), fRoa)

-Let us suppose that

(4 Wag)-F Cg) )/(F2(Rag)-f Rang) 0 {or 0g) °,
from the algoritha we have:

oem int (4 (apg )=F1 Borg) )/ (12 (Rang )~ £2erg)? f Rag) ferg) }

and thence we deteraine Kyl.

-\f hyie0 then from theoren 3 (c) xek™, otherwise if
x 10fgithy, qq) then SygeX”

-Let us suppose that the condition (*) holds, h,i#0 and also

Rita, | (Berg)

-By theorea 4 we have:

Fy RagSf ByDSE Raa) A fyRagSto(Ry)Sf2(bog) (")
~If figisO by theoren 3, we conclude that fy(x*)Sf,(&i) and

fox" )Sf2(Ki) 80:

Fy RagdStyCx)SF,yi) 0 f2(Rag)$f2(x°)8 12 (Rel)
and since CF, RD, 2Kaid # CF | (Rood F2(Rag)) (notice that by

hypothesis Aalthy,| qa), we'Ji have from (tt) that either

(<4 Borg) or F2(y<f2 (Kaa).

-If h,ir0 from theorea 3 it {is concluded that fy (SiS y (x*)

and folkiSfax"), Consequently:

fyDST(x78 (Rya) FRSf2x"8120)
and like before from (**) we conclude that f Rog)< fy Kei) or

£2 Fog)< folk). It aust be remarked that since the hypothesis of

the lemma 5.3, in appendix, are hold, hgithy, i Reg) is equivalent

to hai*hgikRe.g) and therefore (fy Reid, F2RyD I#CFy Rag), falRang))-

-fis X is convex compact sith a finite number of extreme

points, if we consider that f2Rog)*f2Re), hgi*ho. Seng) and

that (*) holds in all the iterations of the method in the course

3See lemma 5.1 in appendix.

‘Oaccording to lemma 5.4 in appendix.
11

 



12

of STEP t, then it will only be possible to get a certain number

of times either h,i<o or hid. Then, for some i, we'll

necessarily have hyi=6. Therefore from theorea 3 (c) XieX™,

-Finally if in any iteration, in the course of STEP 2, it

comes about that £2ag)=f2Roa) then kage M

-lt should be noted that values of the parameters «° in R*

and k in [1,+00[, have no influence in the convergence of the
method, in the sense that this will necessarily ocurr.
~A carefull analysis of the algorithm, leads to the conclusion

that the more close «° is to the optimum value the aore rapid

is the convergence of the algorithm. So the knowledge of an
approximation to the optinua, (if it exists) must be taken into

account in the choice of the value for «2°,

-Sometines the characteristics of the o.f. of the problem can
give some information about the limits of the interval to which
the optiaua value belongs. For instance if the coefficients of

the denominator function and its independent tera are
positives, we can conclude the following:

c, Cy c, oy
Let —2 = ain{—, i=1,_,n} and —? = aax{—+t, jel,_,n}

% om &2 oo
Pp i q J

If x*ex", then:

c Cc

win2aC665") Smaxtaot TY
25 B, 2, p,

(see formulation given to Py).

-This conclusion derives from the Cauchy inequalities [9]:
~If ny,ng, —~ ,M are real numbers and dj,d9, -~ ,d} are

positive, then:

nytn,t*n,nh. {

ain{—, i=1,.,t3¢
n.

g Seax{—, ist, t}
d,+d,+.+d, d

i i

-Hithout loss of generality, suppose that Oe{x*) 1x74},

with t-1Sa, where x* i, for i=t,.,t-1 identifies each of the non

null components of the optiaum solution x*,

\From Lemma 5.2

 



“Hith njncy x") and dj=cg.x") for i=1,2,.,t-1, mysBy and dy Bz

we have cy, x*j/02, x* 1204/02, for i=l,.,t-1, and in these

conditions we obtain the inequalities (itty,
-fAs for parameter k, we think, from computational experiaents,

that k=2 is a good choice.

-(f x? takes a value not fess than the optimum value of (Pj)

and k takes the value i, the method doesn't leave STEP 0
without finding the optinaal solution and behaves similarly to
the Isbell et al's method.

3. Evaluation of the error incurred when we take point xk

obtained at the “kth iteration of the method, as an
approximation to the solution of (P1).

-This method allows the estimation, for each point x!

(obtained at the ith iteration of the algorithm), of an upper
bound for the error incurred shen that point is taken as an
approximation to the optiaua, which is lower the higher is the

order "I" of the iteration.
-This possibility is of great interest in situations where the

nuaber of extreme points in the neighbourhood of the optimum is

high. In this situation not only the absolute precision ¢=0 (in
the present algorithm the upper bound for the error is

designated as ¢), may entail a large number iterations that are

not justifiable but also in extreme cases this may have no
sense, taking into account numerical considerations.
-Recording to the previous study we know that in each

iteration of the method, once Rag and Rene have been deterained,

if x*eX*, then:

Fy ergdSty (x81 (Ry) & f2Rag)Sfa(x")S12(%q,)
and in these conditions:

Fy Beg) /fog)S4 Cx"Emil fag)» fBog)
-When approximating x* by the arg mintf (0), fRoe), the

incurred error is not greater than

elf, Rag)/F2lRag)-mint fgg), fod}

-This upper bound may still be reduced by taking as lower
bound for the objective function's value in %, the value of

that function corresponding to the point of G(R") 12 which is

12 with 6(x)=(120x),f 10x).
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the intersection of the support lines of that region that go
through points (12g) £1 Gag) and (f2 (ag), £1 Gog)

respectively. That is f;(%)/f(%) is such that (f2(%),f(%))

is a solution to the system of equations:
Fy Cx-aghgGd=hy

fy (x)-agfo(xdeh
%B

-It should be noted that, according to the proposed method, if

Keg and Xap are points different from the searched optimum we

have:

hag? —) F (og)<n

ha? - F Rey9) 200g

-Let us consider the figure i. Taking into account that the
lines rp, rg defined by the equations hag’*) "Ay, and heap (<) "a.

respectively, are the support lines of G(X), the whole feasible

region '¥, is contained in the shadowed area, since:
hag’)2h. ¥xex

hag *)2hy, ¥xeX

-Therefore, taking into account that o,%6R* and that

fy)<oq, (Rag) Op, any line which passes through the origin

and a point (fo(x),fy(x)) of the shadowed region, has a slope

f(x) not less than the slope of the line that passes through
the origin and the point (f2(%),f,(2)), intersection of Pq and

fig. 1

1K.) (%)

Bog)
Ga)

 

 

The feasible region is defined by “GC X}".

 



-Consequently we have f(x)2f(%) VvxeX and in particular

f(x*)2(%),
-On the other hand the condition 1B)34, a)/2(Raa), is

also verified and hence the upper bound for the error cannot be
greater than the one initially considered if ae take the value:

B=] f(R)-mint f(%y0), Fae) H (1)

-This value "&" chosen for upper bound of the error is

considerably more narrow than the value identified by “e".

Therefore the value & should be the one to be used as an upper

bound for the error, having in mind to obtain the highest
possible precision.

4. Example of Application

“We'll apply the nes algorithm to the following example

taking as maximum admissible error Sx1079 (that is & must not

be greater than this value), «920.5 and k=2:

Determine arg min{fy(x)/fo(x): xex}

with fylx)e-xy+xge40 5 fo(x)=xy+3x2-18;

% belng a set of Rn, defined by the
following constraints:
xyt5xy $96 ; xyt+3xp $62 5 xyt+2xm § 46;

xyt xg SFL 5 Sxyt2xa £113; 4xy- xp § 67 |
3xy-5xp & 29 5 Sxy+?xp 2.59 5 3xy* xp 2 23 |

?xy - 2x2 2 6; x1 ,x220

-The decision space for this problem and the respective image,

given by f(x) and f2(x) are represented in figure 2.

-The images of A, B, C, 0, £, F, G, HK, t, J (extreme points of
the decision space) by f;(x) and fo{x) are identified as A’,

B', C', BD’, E', F', G', H', I', J’ respectively. The value of
the points coordinates P=(xy,x) and P'=(fo(P),f,(P)) for

P#A,B, ~ ,J, are indicated in the next table.
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0 2 30 40
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A B Cc D E F GS H | J
 

(19, 9) (18, 59} C13, 29106, 5) 4,119.06,18)1¢11,17) (14,16)1(16,15)K17,14)

 

4 B coy Dy Ee F GT RH \" J
            (28,3015 27) 1,29) (3,890 9442ER) (44,46) 44,42)43,89) (41,37)

 

~By applying “STEP 0" we determine Xp leading to the point A

of the figure and since hg 5(A)>0, we have apen®, Rogeh,

ap=f(R)=1.07. Next we determine Xap and the point | of the

figure (Reg 1) is obtained, with hy 7 (1)#0;

-According to “STEP 0", once £2 (Rag)*f2Go_) we proceed

to “STEP 1",
~Since (fj egg) Fy Reg) 1/017 (Ryo )-f2 Reg) a org orgh, by

applying "STEP 1", we put ce !/=min{9/15, f(A), f(1)} = 9/15
and %4 is determined (see figure 3).

-As the figure 3 ilustrates, it may be concluded that iFd

CU'aC4oCsy), fyCR0) and since hyl(%4)<0 and hyCK3) hig, Roy)

1ca becomes o! (agec!) and Sing becomes Xj (that is hagJ),

according to the algorithn, and we proceed to STEP 2,

 



 

 
Since fo()*fo(l) '4 we determine &, according to foaula (1)

obtaining a value greater than the admissible maxiaua error,
thus returning the process to “STEP 1". Then we put:

oem int (fy (d= fy (IDC fo(d)-f9(1)), FC), FO) ef (023774
and since (fy (J)- FCI)/(Fa(J)-fo( elagag? 2 is

deterained.

“fis the ast figure illustrates, %28J (that is

(f9(%.2), fy X20 )ad") and this tine we | have hy.2(82980,

Therefore we may conclude that Jax",

>. Computational Experiments

-Several computational experiments were carried out In order
to compare the efficiency of the different methods referred in
the begining of this paper. For this purpose we have generated
several problems by using a pseudo-random number generator and
we have determined, for each asthod, the average values for the

nuaber of pivoting simplex operations, the number of iterations
and the processing times needed for obtaining the optinal

solutions.
-With this test we solved 120 {linear fractional programming

problems with the following characteristics:

'4See table of the last page.
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20 decision variables;
20 contraints defined by inequalities;
All the coefficients of the decision satrix
have absolute values in J0, 10), 20% of which are
negat ive;
Alf the independent teras were obtained from the
expression:

2g.
2 for i=1,2, . ,20

j=

The coefficients of the numerator function of the

objective function, were generated in [-1000, 1000);

The coefficients of denominator function of the

objective function, were generated in J0, 2);

25% of the generated constraints are of the type $;

For the bicriteria approach method, for the Isbel! et

a!'s method and for the MODBIL, descrived in [14], we

used for «° the value suggested by Bitran et al [5] '5
(in general, this value leads to good results) and
the upper bound of the admissible error in the stoping-
-criteria has the value 0.005;
The initial pardmeters for the MODBIL, are obtained in

the same way as in the bicriteria approach method (by
application of the step 0 of the algorithm);
For the tests concerning the bicriteria approach method

and MODBIL, where the determination of the inicial

parareters ap and ag with nlap)>0 and nlog)<0 was made

according to step 0 of the algorithm, we used k=2,

-These experiments, were made in conditions similar to those

required by Bitran [11] with respect to the characteristics of
the generated probleas, but involving a greater number of
problems and without the aim of studying the correlations
between the obtained values and the geometric properties of the

problems, the exclusive goal being to determine the average

values and respective standard deviation.

-The tests were made in a microcomputer PC8-NCR, with the
algorithas implemented in pascal and using a_ turbopascal
compiler 3.01A of Borland Inc.
-Having in mind to improve the efficiency of the proposed

method we introduce in the algoriths the following modification

in the determination of the parameter, ol, in step 1 of the

algorithm:

SeseVty  Vioo/<Vio,Vio.
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Let appt ty (ag)=F1 (eug))/(2 (Reig) F2(Rag)) and 108) such
that Fy (R)-og ta(R)=hy and £1 (3) -agfg(R)hy. The choice of the

paraqaeter, ol, is done according to the procedure:

if mintong, ffQ), f Ra.) cng then

ol song
else

oi ar( 1RHC -AC mintfq), Reg);

with A(ij=$. Other choices suggested in [14], such as

ACi)=1/Ci+1) ee ACi)=1/2', led to the same results and we
suppose that these are of interest onty in problems of
dimension greater than the one allowed by the available
equipment in our study.

-This procedure was suggested by the acceleration techniques
of the bisection method when applied to the calculations of the

root of equation, n(e)=0, as described in [14] namely in what

concerns MQQBIL and MOGBIN.
-The obtained results are shown in the following table:

 

 

 

 

 

 

 

   

Average numbers (1!) and standard deviations (c) of the numbers of pivotting
operations, number of iterations and processing time in seconds

Method pivoting operations yiterations processing time

Charnes et al 66 20 -- -- 57.9 16

Martes 40 6.8 -- -- 33.8 5.5

Frankel et al 67 15 47 2.5 46.5 8

tsbell et al 47 9.5 3.3 0.6 36.2 6.3

MODBIL 50 9.2 2.9 04 393 56

Bicriteria Approset 49 49 3 os 38 66        
6. Conclusions.

~In what concerns the methods shich enable to evaluate the error

incurred when the current solution is approximated by the iterated

point, we may conclude, from the computational tests, that there is

a certain competitivity between MOOBIL and the proposed method.

-The inclusion of MOOBIL in the tests (chosen among the methods
described in [14]} stems from the fact that it is the method closer
the one presented here and from the fact that, according to the

19

 



tests presented in [14], it leads to good results. The use of
polinomial interpolation - such as in ITBIN which is the method
recommended in [14] as being the fastest one - could also be
included in the proposed algorithm. However we think that this only

would have significant consequences in problems of dimension which
we were not able to test with the available computational means.

-NODBIL, as well as the presented method, leads to the same

upper bound for the error of the current solution. This may be

easily concluded by comparing figure 4, where the function nla) is
represented, with figure 1. Indeed, from this comparison we can

establish the relations:

   
 

f,(% )-f,(%)
. . ; 1 te i te

Worg) =oi Nog)=a &=f(X); Qe f (R) -f (x)

20. 2°20
A B

al / fig. &

Kp) joaacee

5

Wecplfersececceessrseeeeneeeetseertnneeeeneneeeeee 
- Although our method has been presented for the linear case, it

can be easily extended to the nonlinear fractional programs dealt
with in [13] and [14],

-As the computational experiments shows, the method introduced

by HMartos requires, in most cases, fewer pivoting simplex
operations than any of the other methods here referred, being

obyiousty more rapid. However it should be referred that this
method, although being faster, only should be used when the error
associated with the determined solution is mot relevant to the

application under consideration,
-Aithough the Charnes and Cooper's algorithm is algorithmic

equivalent to the one of Martos, according to the proof by Wagner

and Yuan [10], the first one has in most cases values of pivoting
simplex operations and processing times greater than the second, as
a result of the changes in the decision space. These differences

are essentially originated by the suplementary effort that the
determination of the first admiegible solution jeads to.

20
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Appendix
Lemma 4.1

Let (Pog) and (Pos) such that Fag’ Fg? and

£2 Gag)*fy Gag), then:

f (ag) $f Goa) A £2 Ferg)<f (Rog)

proof:

Let x*ex*, by theorem 3, we'll have:.

hing’? = 10x") $1 ya) & f2(x")Sf2 Rag)

Fg? => fy Rong) $f (x") A f2Rog) $f2(x"),

$0 1 Bag) St) Rag) A F2Qhag) $12 (Fag), since by hypothesis

12(ag)*f2 Gag) we have f2Qag)<f2 (Roa)

0
Lemma 4.2
Let (Pig) and (Pug) such that hag’ haat 12 Bag) *f2 ag)

Aliso assume CF] Rad Fy Borg) )/ 62(og)f2Rog) )e forqroegs.

Then ap 6 &< op,
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proof:

hy $fy(x)-tgfolx) vxeX vee{A,B}, so In particular we have:
he c

£1 Borg) F1 Rag) Sopf2Rag)-f2(Rg)

and 1 Rep )-F1 Rog) Sorat £2 (Ryn)f2Reig)

Since by Lemma 4.1 £2 (hyp )-F2(Kog) 99, we have:

Oy SCF] Raya) Ft Reng) I/(f2 Ren )- Fo (Korg) ) So and since by

hypothesis CF RoadF org) 1042 (era) £2Rag) 6 Lrg org, we may

conclude:
a6C11 Boug)F1 Gharg))/(12 (Rag) F2 Reg) <9 (")

From (1 (Rog) F] Reng) )/ (12 Rag)f2 Rag) )<Oep we have &ae, 30

we'li only need to prove that ag<é,
P (11) . ho 5 45,

hg = fog) og , have into account (*), if F(R) BH

then asc.

Let us suppose that f (Rg) Seg, then:

fy (x)-og f20x) $F (x)-FRy) FQ0x) ¥xeX,
, e a q a - a * 2and in partieutar we have hag Korg) $F (Rog) f Rug) £2 Ro) 0 and

in view of agSMg(Reeg) we may conclude against the hypothesis

that hagS0. So mgs f (Ryo) and from this conclusion, from (*) and

(*t), it finally results that og<&.

|
Lemma 4.3

Let (Pup) and (Pap) such that Peg’, hag, fo(Saug)*fa(Rag)

and Bmmin{ (fy (Rep )-F Reig) )/Cf2 (Rp d- £2 (Korg) Foe ds f Rog)

Suppose also that CF] Ryn d-F1 Borg) / (42 (Rey) f2 Roig) dm ferg org}

Then:

¥xeX: hg(x) ShpXe, ) ¥ce {A,B}

= fog) Sf Cx) a fold Sf2lq)

proof:

From the hypothesis we have:

CKI- fy (x) Seg£2 Xp)-fax)) yvxeX voe{A,B} (*)

Let xeR:  f4(x)-f1 (Xp) SRC folx)-fol%)) voe{A,B} so we can

concluded that:

O£ (,-&) (folXy)-fa(x)) voe(A,B},

 



and for csf, we get OS (oug-B) (2(hy) F2(x)), and for c=B, we

obtain OS (oog-B)(f2 (hag) f2(x)). From Leama 4.2 se know that

aps&iap, therefore se have ap-&>0 and ag-&<0, so we may

conclude that £2 (Raq )-f2(x)20 and £2(%o,)-f2(x) $0. From this

conclusion and from (*), finally follows that f1,(x_)-f,(x)$0.

4}

Lemma 5.1 .
Let (Pug) and (Pars) such that FugOs hag”o and

£2 (kg)#f2Gag) then:

(11q)-f1 og))/(f2(hag) f2 hag) Ie lageg) = RagRaghak*ed,
proof:

Let x*eX*, Theorem 3, establishes:

Fag<® => f(x") $f; (xg) 4 fo(x*) $fo(xg)

hyg?? = fy(xp) Sty Ox*) a folxg)Sfo(x")
Let Oren ( Ty (Read-Red I/ C12 Roa) F2 Rog), with ce{n,s},

es hyCagdahyKorg), with ce{A,B}.

(i) ff c#A then Pag" Moeg(x8)<0 and by Theorea 4 we have

f1(x")S 41 Bo) and f(x") $12 Gag) and so we have:

fy Rang) S11 0x") $1]arg) A £2 (Rag) $12(x") $12 (Ro)

or fy Rag)=f1 (x) A f2bag)=f2(x"), therefore kage”

(ii) For c=B, we'll conclude in an identical say that SegeX”

Nevertheless in any case we'll have ergRaghok".

0
Lemma 5.2

Let x*eX", xg,xpek: £4 (xp) Sty(x")Sfy (xp) 4 folxp)S fox") S fo(xq)

then:

folxp)=folxp) => xpex®

proof:

From 1/folxg)S1/folx*)1/folxg) and fo(xg)=f2(xg) se obtain

1/fo(xg)at/fo(x*) = fy (xp)/folxp) Sty (x*)/fo(x*) e@ xgax™
0
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Lemma 5.3 .
Let (Pug) (Pop) such: that f=. <0, f,.>0 and

oA %B
£2 Bog)*1(Rag)
Let dmint (fy (a)-F (eng))/( fo lRaa)-f2Rag)? Rang) fag)?
and fg#0.

Then Agwhg (ag) © hgwhe Rog)
proof:

(=>)
Suppose that hawhe,Rog) then we have:

Fj Gg) F1 Borg) $8012 Ryn)f2Ra)?

Since the hypothesis of Lemma 4.1 are held, we can conclude
that 12 (Rug)12 Roig) 20 and so we have:

(F4 Bog)=F1ang) )/( 12Rg)f2arg) Sa!
and hence:

&=( fy (Ree )-fy Cog) )/( 42Roe) £2 Borg) = hg, Rerghe,org)

(e)
if Balt (Ryo)), f Roe) } then fg$0. Suppose that hawhg,Rog),

then fhg20 (since BSRo.) o hg, (Rog) 20) and since by

hypothesis hg*0, we may conclude that Bali (hyJ), f Boa) } and so

Ba C 8 (Reo d~ Fy Reg) I/F2(hyn) F2lor) )

Therefore hg,Rog )=he (Korg), thus completing the proof.

0

Lemma 5.4

Let (Pug) such that hago and fet &@AM* such that BSF (Ry)

and fg#0.

Then hgnhe,Kp) => Sage”

proof:

if hgwhe (Sag) then, since by hipothesis BS 1 (Ryo) hy(20

and hg#0, we have hg>0 and by Theorem 3 we conclude that

fy (Reg) $F (x") and 2(Req) Sf2(x"). On the other hand we knos,

by hypothesis that hag2 So from the same theorem we may

conclude that f(x") St, ) and f(x") S folk ), Thereforeeg eg
xgeX

0
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ABSTRACT

Assumethat a large sample of size n is available from a population having a Fréchet
distribution for maxima. From that sample we derive simple homogeneouspredictors for
the largest value of the next m observations obtained from the same population. The

predictors are obtained by splitting the ordered sample in two blocks and using their
averages. High asymptotic efficiency of each simple predictor with respect to the best
homogeneouspredictor is obtained and is independent of the number m of the next

observations. Homogeneousprediction region and the best homogeneouspredictor for
a censored right sample are aiso derived.
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1. Introduction

Let (X,, Xe, ..., Xn) be an observed sample obtained from a population with

knowndistribution, except possibly for some parameters. The prediction problem

is, from the observed sample, to obtain a statistic forecasting, a function of the next

m observations (Xn+41, Xn+2, ---) Xntm)-

The measure traditionally used in the statistical theory of prediction is the

mean square error between the predictor {(X1, X2,...,.Xn) and the value to be pre-

dicted Z = (Xn, ...; Xntm), M.S.E.=E|(f — Z)?]. This is the criterion for choice

of the predictor that we will use.

Tiago de Oliveira (1966,1968) gave the general solution for the best (least-

squares) quasi-linearly invariant predictor and lower bounds for the mean square

error of prediction. Tiago de Oliveira and Littauer (1976) formulated quasi-linearly

invariant predictors for the minima of the Weibull and the maxima of the Gumbel

distributions.

In the present work we are going to consider only homogeneousprediction

for the Fréchet distribution.

Recall that a statistical function y is said to be homogeneousif

(BX, ...,BXn) = BP(X1,.,Xn) (8 > 0).

As some examples of homogeneous statistics we can consider the largest

value, the minimum value, the average and more generally linear functions of the

orderstatistics.

The homogeneousfunction we intend to predict is Z = max(Xni1,-.., Xn+m)

owingto its interest in practical applications.

 



2. Homogeneous prediction

2.1. General results

From the observed sample (Xi, X2,..., Xn), with known Fréchet distribution

with a scale parameter, Neves (1987) obtained the general solution for the best

homogeneouspredictor as

Sv” dpp"-'£(Ba, teey A2n)pm(821, tery B2n)

Jo° dB8"£(B21, ..., Btn)
(1)f(21,....2n) =

where L(a1, sy Zn) and f4m(21, ...;2n) denote respectively, the marginal likelihood of

(X%1,..., Xn) and the conditional mean of Z.

Recall that the Fréchet distribution for largest values, with known shape and

location parameters, « = Ko > O and A Ao (Ao = 0 forsimplicity), is

F(2;5) = { exo(-(G)™) if 20 0)

Thus if X,, Xo,...,X, are n iid. random variables following (2) the homo-

geneous predictor assumes the form

mT(n)fn = f(t20) = GagFiTeohnT] na)
with

Bm = mor(1 ~1/eo) and M,z= =a (xo > 1).
1

In our previous paper, Neves (1987), we proved that

Viino( ~1) 5 N(0,1).

27
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2.2. Simple homogeneous predictors

In Neves (1987) we have considered the simple homogeneouspredictors:

a(xo,m)X, b(Ko,m)Q and e(xo, m)M,,

where a(xo, m), (xo, m) and c(xo, m) are coefficients that minimize the mean square

error of each of the predictors about the conditional mean jim, Diin 1 and X, Q and

M,, are the sample average, the sample quantile for probability p and the sample

largest value, respectively.

We have obtained a zeroefficiency for c.M,, (let us note that var(M,) =

n?/*0 (T'(1—2/no)—-I'?(1—1/x0))). About the two other predictors we have obtained

reasonableefficiencies, independent of m.

A short table of some of those values for the predictor a.X

Ko 3 4 #5 10
eff(a1.z) 0.24 0.34 041 0.51

The asymptotic efficiency of b.Q is maximum for the quantile of probability

p = 0.2; its value is 0.6476. For this predictor the efficiency is independent of xo

and m.

The papers of Kubat (1975,1982,1984), Kubat and Epstein (1980) and Hiisler

and Schiipbach (1986) lead us to consider the simple homogeneouspredictors

Ly = aiXy+a2X_ and Lz = b1Q1 + b2Q2

' Let us note that
 

oO +00

M.S.EAf) = f ~f (Z — fYPL(21,...,tnj2)de....dtndz =

+oo +oo too too _

/ .f (2m)?Lleyn taetnndon def .f (f-pm)? £(21, ..2n}2)d21..dzn

= On om + Diem(f)

and, as Crm is a constant, minimizing M.S.E.(f) is equivalent to minimize D2(Sf)

 



where X, and Xzare the averages of two contiguous blocks of a convenientsplitting

the sample of the ordered observations, a1; = ai1(xo,m); ag = a2(xo,m); b1 =

bi(xo,m) and be = b2(xo, m) are determinedlike for the previous simple predictors.

The criterion for selecting the two blocks is that one of maximizing the

asymptotic efficiency of L, and/or Lz about the best homogeneouspredictor fn.

Let us denote by X(1) < ... < Xp) the order statistics corresponding to

X1,..., Xp, obtained from (2).

Let Xa) <uK< X(r) and X(r+1) <u. < X(n) be the two blocks, with

r= [np],0 <p<1and X; = LiXe and Ky = eX

The asymptotic distribution theory for the averages of the blocks of order

statistics can be found conveniently summarized in Kubat (1982), from the results

of Chernoff et al. (1967). .

Qi = X({np}41) 20d Qe = Xiing]41), 0 < p <q < 1, are the sample quantiles,

p and g being also selected by maximization of the asymptoticefficiency of Lz about

Fa-

From Kubatresults (1982) we have, for large n,

= 1

with x = [Xi Xo], pt = [461 | and

Ve a? on
a2 of

1 f* 1 lr
= zf(x)dz; = —— xf (x)dz;masffs m=] afte)

with

11 Xp

ot = ah a” f(2)de — wi + (xp — m)?(1— P)]5

+00

o} = ris/ 2?f(z)da — 43 + (ua — xp)?P|5
x p

12> (u2 - Xe) (xp - 41).
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Thus, the mean square error D?,, of Ly can be written as

Di,m{L1) = E{(a.X1 + a2X2 _ Hm)*] =

= var(a1X1 + a2X2) + (air + a2ue — tm)? = a7Va+ (a7 - pm)?

with a? = {a1 ay}.

The limiting values of a that minimize the mean square error are

2 3
4199 — 42012 4207 — #1712

01 =mgaCis= em 323
Hao? + wio3 — 2u1Ma012 H30? + uto2 — 2uiy2o12

being then
2var(f, Beeff(L1) = ( n) 7m

var(a,X1 + a2X2) ~ Re.atTV a’

The asymptotic efficiency is also independent of m and much better than

that one of the previous simple predictor based on the sample mean.

For m = 4 (for other values of m only the coeficients a are different ) a short

table of the efficiency of L, is

Ko p ay ag eff

2.5 .380 3.1039 .0491 .9120

3.0 .37 2.4399 .0770 .9214

4.0 .36 1.8324 .1058 .9323

5.0 .36 1.5559 .1168 .9383

6.0 .35 1.3954 .1296 .9422

8.0 .35 1.2259 .1363 .9468

10.0 .34 1.1300 .1470 .9494

Let us note that for the different values of «9, the splitting in blocks is made

about the quantile p = .36.

Now wewill go to consider the predictor

Le = b1.Q,4+ 62.02 with Qi = X(inp}+1) and Q2= X({ng]+1)i

Q, and Q:2are jointly asymptotically distributed with bivariate normaldistribution,

Cramér (1946) and Mosteller (1946).
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Denoting by Q? = [Qi Q2] and x7 = [xp xq] we have

Q~ Mx=V) where v-|¢ 3 |
C B

with

  

aaP=p), p.Wl-9). oa ou Pile”
Fx)? FOG)? F(xp) f(xa)

The minimun mean square error is attained for the limiting values

Xp-B- Xq-C Xq:-A— Xp-C
by = and bg = bmbao SF hE

™ A.y2 + By? — 2Cxpxq A.x2 + By? ~ 20xpxq

The asymptotic relative efficiency is independent of m and of xo andits

maximum value is .82016 for the quantiles p = .07 and q = .36.

3. Homogeneous prediction region for the Fréchet distribution

Let us recall that a prediction region is determined by an indicator function

(21, %2,...,2n}2) taking the values 0 or 1 depending on z ¢ R(21,22,...,2n) or

z€ R(x, 22, ..., En).

Tiago de Oliveira (1966) has derived the prediction region in the quasi-linear

case; in the homogeneous case y takes the value 1 on the set of (21,..., %n;z) where

[* 486"£(B21, ..., Btn, B82) > C [* dB6"E(Ba, ..., Btn) (3)

where C is such that the prediction level w satisfies

[ereeo very *, a)day..dzadz =u,

For Fréchet distributions, the prediction region is then:

Komz—"°-1T(n + 1+ 1/Ko) > oft ~ 1)!
(nM + mz~*0)"t+1+1/Ko - n"Mn
 (4)
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where M = 13 a7".

Let us consider ¢ = ™;7* . The region (4) can be written as

gitl/no

(1 + p)"t1+1/n0 2c

i

. to n—-1)!

with C' = CaF(ntitis) °

4. Homogeneous prediction for right-censored large samples

Let us suppose than only the first r observations X(1),...,X(r), (r = [np],

0 < p-< 1), of a sample of size n obtained from (2), have been observed.
For the censored sample we have the marginallikelihood

a— —ry-1 Fo 7 Kf, nl -2;" avrL(a1, 04) Se) = ho(B1...2) °°! exp(—(2) +.FBtre, Niortai —e )

so the general solution for the best homogeneous predictor in the censored case is

bm Jef? 4PB~"**—* exp(—B~*(Dy ap" + (r— apt)~ else“yet
or Bpexp(—B-F°(Tj ap+ (r — Lar“)(1 — = WPerI%rrr

(5)

f(z, any Zr) =

Developing (1 — e~(4#*)"“°)"-" and by a changeof variable in the integrals,

we get the expression for the best homogeneouspredictorfor the Fréchet distribution

based on a right censored sample

mI(r) Deno (1)("F")(Diai 2atrtae)

T(r = 1/0) Dyno (15("5") (Lpci at (r+ae)
 F(z, ony £,) = (8)

We wish to express our thanks to Prof. Dr. J. Tiago de Oliveira for his

support, sugestions and improvementof the present work.
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SOME SILHOUETTE-BASED GRAPHICS

FOR CLUSTERING INTERPRETATION
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ABSTRACT

Silhouettes were developed as a graphical display for nonhierarchical cluster analysis. They

are based on the ratio betweenthe tightness of a cluster and its separation from other clusters.
A possible extension is to represent for each object both these characteristics in a two

dimensional graph.
The same technique can also be used with fuzzy clustering, making use directly of the fuzzy

membership functions to measurethe tightness ofthe links of each objectwith its principal
cluster and its neighbour.
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2*_introduction

Visual representation has always been an important means

of communication. Nowadays many other mathematical tools, such as

analytical formulas and computers, are at the disposal of the

researcher to describe phenomena in a precise way. However,

graphical representation still possesses a very suggestive power

that no other mathematical description is able to provide. The

reason is that a graph yields a global view of the phenomena

together with all the relations between its parts. This is

Clearly an advantage over most formal mathematical models.

No wonder that for cluster analysis, which is sometimes

defined as the art of discovering groups in data, graphical

representation is a much cherished tool. It may even be the main

tool in examples where all objects can be represented in a two-

dimensional space. In multidimensional situations clustering

algorithms are necessary, but graphs are still very helpful to

illustrate the results and to reveal some features which may be

the start for a further investigation.

In hierarchical clustering, dendrograms (see e.g. ref. 1

to 5] represent the relations between the partitions at different

levels, the merging sequence, and the level of each partition.

For nonhierarchical clustering, a representation by means

of silhouettes was recently proposed by Rousseeuw [6].

Silhouettes are based on the ratio between the distances of an

object to its own cluster and to its neighbour cluster.

 



In the present note, silhouettes will be extended in two

directions: a two-dimensional representation for each object

(Section 3) anda modification for fuzzy clusters, either as a

one-dimensional (Section 4) or as a two-dimensional graph

(Section 5). Some further considerations and conclusions are

given in Section 6.

Recalling

Silhouettes were developed by Rousseeuw [6] to evaluate

the quality of a clustering allocation, independently of the

clustering technique that was used. Only two streams of

information are needed: the partition of the objects into a

number of clusters (at least two) and the matrix of proximities

between all objects.

The silhouettes are then defined as follows (we restrict

ourselves to dissimilarities, although one could also use a

collection of similarities between objects):

-let D(i,j) be the dissimilarity between objects i

and j;

-let a(i) be the average dissimilarity of object i,

which has been allocated to cluster A, to all other

objects of the same cluster:

rp(i,4)
a(qi) = j-————

Na-1
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with Jj € A and nea = number of objects in A. It is

assumed that na > 1.

-let d(i,C) be the average dissimilarity of object

i of cluster A to all objects of any cluster C,

different from A; hence

rD(i,i)
da(i,c) = j———-

Ne

with j © C and ne = number of objects in C.

-let b(i) be the minimum over all clusters C of

d(i,C), corresponding to the neighbour cluster B (see

Figure 1).

Fig.1: An illustration of the elements involved in the computa-
tion of a(i), where the object i belongs to cluster A (from [6]).
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-let, for na > 1,

 

 

a(i)
a(i) = 1- if a(i) « b(1)

b(i)

(1)
b(1)

= ~1 if a(i) 2 b(i)
a(i)

for na = 1, s(i) = 0 by convention.

It can be seen that alwaya

-i1 s a(i) < 1. (2)

An a(i) near +1 means that the object i has a small

average dissimilarity to objects of the same cluster and a high

average dissimilarity to the neighbour cluster, and hence to all

other clusters. A value near -1 expresses the opposite.

Having computed s(i) for each object of the data set, it

is now possible to draw the silhouette of each cluster. For each

object of that cluster, one draws a horizontal line with length

proportional to s(i), pointing to the right whenever s(i) is

positive and to the left otherwise (although this last part of

the representation can be deleted as it is of less interest). All

these lines are drawn below each other in decreasing order of

magnitude. Each cluster has its own silhouette, the height of

which is proportional to its number of objects whereas the width

expresses its relative tightness.
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Fig. 2 and 3 illustrate this technique ona set of

objects consisting of two “natural” clusters. In Fig. 2 the

natural clusters have effectively been found by some clustering

technique. Because the clusters are fairly symmetric, so are both

silhouettes. The largeat valuea of a(i) correspond to objecta at
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Fig.2: Silhouettes of basic model: 2 clusters.

 



the extremities of the set; the smallest values characterize

objects near the interface between the clusters. The largest

value is 0.90 for both clusters, and the smallest is 0.52 for the

first cluster and 0.35 for the second. One can also calculate an

average silhouette width for each cluster and for the entire data

set; in our example all these values happen to be 0.79.

If a partition into three groups is performed (Fig.3),

the first cluster remains unchanged whereas the second is split

up in two parts. The silhouette of the first cluster is very

similar to the one in Figure 2: not only the general shape is

similar, but also the ordering of the objects. The a(i) values

become slightly smaller because b(i), the average dissimilarity

to the objects of the nearest of the other two clusters, is

usually less than the average dissimilarity to the big cluster in

Figure 2. This yields an average silhouette width of 0.75, as

compared with 0.79 in Figure 2.

As for the two "half" clusters, the changes are of course

more striking. Although for each object i the value a(i) is

decreased, at the same time b(i) becomes smaller still, 80

a(i)=1-a(i)/b(i) decreases. This results in an average silhouette

width of 0.50 for cluster 2 and 0.63 for cluster 3, as compared

with 0.79 in Figure 2. The overall average silhouette width of

all three clusters is 0.65, or about 20% less than in the case of

two clusters. Therefore, the overall average silhouette width

gives some indication about the "best" number of clusters.
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FOR THE ENTIRE DATASET, SILHOUETTE WIOTH 18

Fig.3: Silhouettes of basic model: 3 clusters.

Unfolding silhouettes in two dimensions

Silhouettes are

42

based on the evaluation of two functione

 



for each object:

the "tightness" a(i)

the “separation” b(i).

Instead of calculating the ratio of these two functions, it is

also possible to simply plot these functions in a two-dimensional

graph, using, say, a(i) for the x-axis and b(i) for the y-axis.

As both a(i) and b(i) are always positive, only the first

- quadrant of the (x,y)-space is used. Looking for the relation

between the s(i) values and the (a,b)-plot, it can be observed

by= 4

1
s(

j)  

 

-1¢s(i) (0

 
s(i)= -4

Fig.4: Relation between separation/tightness and silhouettes.
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that all objects with the same s(i) values lie on a straight

line, starting from the origin and satisfying one of the

following equations:

b(i) = (14+8(1)) ai) if ~1s8(1)<0 (3)

1

b(i) = a(i) if Oss(i)st (4)
1-a(i)

From these equations it can be seen that objects with

s(i)=-1 will be represented by points on the a-axis. Objects with

a(i)=0O correspond to the equation b(i)=a(i), and will be

represented by points on the 45° line. Objects with negative s(i)

will lie below that line, whereas objects with positive s(i) lie

above it. Objects with s(i)=1 end up on the b-axis. These

relations are represented in Fig. 4. It should be observed that a

plot can be drawn for all the objects of a data set as well as

for the objects of each cluster separately.

Fig. 5 and 6 show these plots for the example with two

"natural" clusters discussed in the previous section. Fig. 5 is

very typical of a good clustering allocation. The plots show a

rather narrow concentration of the tightness a(i) and a much

larger dispersion of the separation, with most objects having a

b(i)/a(i) ratio larger than two. The only object with b(i)/a(i)

smaller than two is located near both clusters. It almost forms a

bridge between them, as can be deduced from the fact that a(i)

has one of the largest and b(i) one of the smallest values.

In the three clusters case (Fig.6) things are clearly

different. The first cluster still resembles that of the former

 



case, but the two remaining clusters have much smaller values of

b(i), which in turn are much nearer to the a(i) values. This

could be a first indication that these clusters should not have

been separated.

 

GENERAL PLOT

BsA= 2 BA 1

 

Por o cLustrm: 1 PLOT oF cLusvee: 8

 

Fig.5: Basic model: two-dimensional hard representation of 2

clusters.
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Fig.6: Basic model: two-dimensional hard representation of 3

clusters.
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membership

The goal of fuzzy clustering is to express, for each

object, ita relative membership to each cluster. Most fuzzy

clustering algorithms [see e.g. ref.7] make use of average dis-

similarities. By definition, the sum of membership values of each

object to all clusters always equals one. It is also customary to

consider the nearest hard classification, allocating each object

to the cluster for which its fuzzy membership is largest. There-

fore it is possible to define new “tightness” and “separation”

factors based on membership functions, keeping in mind that the

latter reflect similarity rather than dissimilarity:

a(i) = 2 - u®(i) with u® (i) = u(teo,i) = max u(t,i) (5)
t

b(i) = 1 - u®*(i) with u®*(i) = max u(t,i) (6)

tite

in which the membership functions must satisfy the relations:

u(t,i) 20 for all i and t

Eu(t,i) =i for all i. (7)
t

From (S) and (6) we see that

u®(i) 2 ue’ (i) (8)

and hence we always have

a(i) ¢ b(i) (9)

resulting in 0 < s(i) ¢ 1, excluding the possibility of negative

s(i). Apart from this last aspect, the s(i) behave similarly to

what was seen in section 2. This is confirmed by Fig.7 which

shows the fuzzy silhouette plot of the two-cluster example of

that section: the general shape is very similar to that of Fig.2.
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The only difference is that the

larger than the hard s(i) (which,

fuzzy s(i) are generally a bit

of course, depends very much on

the actual fuzzy algorithm used).
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with

As in the case of the original silhouette, it is also

possible to unfold the fuzzy membership function in a two-

dimensional plot. Compared to section 3, there are two main

differences:

1° due to relation (9) all points will lie above the 45°

line;

2° relation (7) induces a series of constraints which were

absent in the hard approach. As we will see, these depend on

the number of clusters that is considered;

a) for 2 clusters, relation (7) becomes

ue(i)+ue?(i) =

and through (5) and (6) we find

a(i)+b(i) = 1. (10)

This relation means that all objects in a two-cluster

system will be represented on the straight line going

from (1,0) to (0,1) (see Fig.8).

b) for 3 clusters, relation (7) becomes

u®(i) + ue? (i) + u(t,i) = 1

or u®(i) + u®*(i) os 1
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which through (5) and (6) gives

a(i) + b(i) 21 (11)

and as u°*’(i) 2 u(t,i) through (6) we also have

ue(i) + 2u°?(i) 21. (12)

Using (5) and (6) this yields

d-a(i) + 2(1-b(i)) 21

go

b(i) s 1 - & afi). (13)

oo clusters

 

Fig.8: Two-dimensional plot with feasibility regions as function
of number of fuzzy clusters.
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Relations (11) and (12) force all objects in a three-

cluster configuration to remain between two straight

lines atarting from the y-axis at the value b(i)=1 and

with slopes -1 and -4 (see Fig.&8).

c) for k clusters, relation (11) is atill valid whereas

relation (12) becomes

u®(i) + (k-1) u°°(i) 21 (14)

which upon consideration of (5) and (6) becomes

1 - a(i) + (k-1)(1 - b(1)) 2 1

b(i) < 1 - 1/(k-1) afi). (15)

Hence the lower and right hand feasibility limits (11)

and (9) remain unchanged whatever the number of clusters; the

upper limit starts from the point on the b(i) axis with value 1

and has a negative slope proportional to i1/(k-1) (see Fig.8).

This upper limit coincides with the lower limit in the case of

only two clusters (k=2) and tends to an horizontal line for an

infinite number of clustera (k=00). It can further be observed

that whenever points are represented on the lower limit, i.e.

when the sum of a(i) and b(i) is equal to one, these objects have

zero membership to all clusters but the principal one and the

first neighbour; points represented on the upper limit line

corresponding to the number of clusters, indicate that equation

(14) has to be considered with an equality sign and hence that
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TWO-DIMENSIONAL TIGHTNESS/SEPARATION PLOT
* eee 

GENERAL PLOT

BsA

  

PUOT oF tuuercm: 1 PLOT OF CLUE > PLOT OF Cuunren: 2

  
Fig.9: Ruspini’s data: two-dimensional fuzzy representation of 3

clusters.
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the corresponding object, apart from its membership to its

principal cluster, has an equal membership to all the other

clusters.

An example is provided by the Ruspini data [8], which

contain four rather well-separated clusters. A partitioning into

three fuzzy clusters shows two well-characterized clusters and a

third one that is not so tight (Fig. 9). The partition in four

clusters gives an improved image for all clusters, confirming the

existence of four “natural clusters" (Fig.10).

6° Conclusions

Graphical representations are very useful to get a global

impression of a clustering. It was shown how silhouettes could be

extended to a two-dimensional plot, providing some new

information such as a distinction between bridging objects and

outliers.

A similar plot can be constructed from fuzzy membership

functions. There all points remain within a triangle, of which

only the upper boundary is a function of the number of clusters.

Moreover, the position of each object within this triangle tells

a lot about the clustering characteristics.

As seen from the examples, the above graphs can even be

drawn with a plain line printer. This allows the implementation

of these graphical representations in almost any computer

environment.
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Fig.10: Ruspini's data: two-dimensional fuzzy representation of 4
clusters.
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