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ABSTRACT. — A theorem is given that relates the directed spanning tree structure

of the associated state graph of homogeneous Markov Chains with their stationary

probabilities when these exist. It is demonstrated that this theorem applies to both

discrete and continuous parameter cases. In tutorial fashion, small examples are used to

illustrate the fundamental result. A method of developing these probabilities recursively

for general Markov Chains is discussed. It is shown that the graphs of some queuing

formulations are particularly well suited to this process on account of their regular

structure. The resulting algorithms are efficient and easily incorporate arbitrary state

transition relationships, and some sensitivity analyses are automatic. An example is

included that illustrates this method, and some interesting open questions formulated.

Introduction

This paper will show that the stationary probabilities of Markov Chains

can be simply related by a certain graph theoretic concept. In addition to

its theoretical elegance, this result will be shown to be useful for (a) hand

computations on systems with relatively few numbers of states, and (b) in

algorithms that develop stationary probabilities for certain queuing formu-

lations, In addition, if certain open problems could be solved, this graph

theoretic approach would open a powerful alternative method in the analysis

of queues.

The associated graph of the transition probability matrix of a finite

Markov Chain is a useful means of representing its structure and classifying

its states as demonstrated in De Ghellinck [1]. Call it a Markov graph. The

latter reference uses the matrix-three theorem of Bott and Mayberry [2], useful

in Leontief economic systems, to relate the spanning tree structure of the

Markov graphs of irreductible, discrete parameter chains to their stationary

probabilities. This has also been pointed out by Medvedev [3].

An analogousresult is presented in this paper, and proven in appendix A

(see also Seeley [4]), for the stationary probabilities of continuous parameter
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Markov Chains. Also call the associated graph of the transition rate matrix

a Markov graph. Then these probabilities are proportional to a simple

function of the directed spanning trees at each state (node). The function

is the sum of the products of the transition intensities taken over each

distinct spanning tree. This result can be applied to various queuing formu-

lations by developing their trees in a recursive manner. Since this process

depends only on the structure of the Markov Chain, arbitrary transition

intensities may be utilized that can incorporate many different assumptions

regarding the nature of queue involved. The development nature of the

algorithm automatically provides a means of doing sensitivity analysis on

certain system parameters, typically queue capacity. In order to make this

result precise it will be useful to discuss some graph theoretic and related

definitions.

Definitions

Let the states of a finite, irreductible, homogeneous Markov Chain M,

be denoted by the set S = {5,, 5), ..., 5,}. Let the differential rate

matrix of such a chain in continuous time be A = [a,;| and the state

probability vector be p(). Also, let +,, associated with s;, be the

stationary probability of being in that space (@= 1, ..., ). Define the

Markov graph of M to be G = (S,U) where S represents both the set of

nodes of the graph and the states of M for simplicity, and U represents the

set of arcs of the directed graph where #;; € U iff a; is nonzero. That

is, an arc leads from 5s, to s; only if this state transition can take place.

Further definitions from graph theory are necessary. For the arc 4; ,

5; and 5, are called the initial and terminal nodes respectively. A sequence

of arcs (#2, Ms, -+) Mmn) Such that the terminal node of each arc is the

initial node of the next is called a path. A graph is strongly connected if

there exists a path between any pair of its nodes.

A subgraph H = (T, V) of G = (S, U)is a graph where either T and/or

V are proper subsets of S and U. H will be said to span G if T is identical

to S.A finite path such that the initial node of the first arc is identical

to the terminal node of the last atc is called a circuit.

The spanning tree structure of Markov graphs is central to this paper.

Trees containing directed arcs will be referred to either as «a tree to a

node», or as «a tree rooted at a node» (the latter are sometimes known

as arborescences, Berge [5]). These two types are distinguished by the direc-

tion that the arcs take in relation to the distinguished node, In particular,

we will deal with trees to any node, 55. These may be defined by a directed
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graph G = S,U) wherein (a) every node, excluding 5,, is the initial node

of only a single arc, (b) noarcs lead from s,, and (c) the graph G contains

no circuits. Such a gtaph contains »—1 arcs if » = |S|; an example is

illustrated in figure 1, A consequence of the definition is that there is a

path from every node to 59.
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Fig. 1. — A Tree (S, U) at Node so and its Focus.

The following definitions are derived from trees to a node, and are the
key quantities in the stationary probability computations. In graphs wherein

each arc #;; has a coefficient a, associated with it, (the a,; correspond

both to the transition intensities of the differential rate matrix for queues

and to the transition probabilities in discrete time Markov Chains) define a

focus at node 59 of a particular spanning tree to that node, to be the product

of the coefficients on the arcs of the tree. This is illustrated in figure 1.

Note that there may be many distinct spanning trees to a particular node,
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as subgraphs of any arbitrary directed graph. Define the total focus at a

node to be the sum of all distinct foci at that node(ie. each tree will have

at least one arc different from each of the others).

The Total Focus Theorem

It is well-known that the associated graph ofa finite irreductible Markov

Chain is strongly connected. That is, it is possible to reach any state from

any other state after at most »— transitions. Within such a graph it will

be always possible to find at least one spanning tree to each node.

The matrix-tree theorem of Bott and Mayberry [2] expresses the deter-

minant of an arbitrary matrix by using the spanning trees of a modified

associated graph. In fact, the determinant is equal to the sum of all of the

foci of this graph. De Ghellinck [1] has demonstrated the utility of this

result to matrices that have the special property that the diagonal elements

are equal to the sum of the off-diagonal row elements. He then applied

the theorem to the solution of the stationary probabilities of discrete time

Markov Chains (although he used arborescences and the transpose of the

transition matrix).

For simplicity, call the above matrices Kirchhoff matrices (i.e. when the

diagonal elements are equal to the sum of the off-diagonal row elements)

since similar results were first proven to apply to current flow in electrical

citcuits. These matrices reflect physical systems wherein there is a kind

of flow conservation law operating. The sum of flow entering a node must

equal the sum of the flows leaving that node. In such systems Bott's matrix

tree theorem may be applied in order to determine the steady-state flows

through the nodes; since in addition to the determinant, the principal minors

are given by a function of the spanning trees to each node (i.e. their total

foci).

In Markov Chains, the steady-state equations for the state probabilities

yield systems of homogeneous equations whose matrix of coefficients is Kirch-

hoff. In discrete time, if P is the one-step transition matrix and 7 the

stationary state probability vector, then the system is:

a. (I—P) = 0 (1)

In continuous time, with differential rate matrix A, the corresponding

system is:
z.A =0 (2)

It is evident that (I— P)satisfies the Kirchhoff property since the row

transition probabilities of P sum to unity. The differential rate matrix A,
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however, is derived from an approximating discrete time Markov Chain whose

transition matrix T is stochastic like P. The diagonal of T however, always

has a term of the form, unity minus the transition probabilities possible

from that state. In formulating the system of differential equations from

which equation (2) is derived, the unity on the diagonal is removed in order

to form the differential, leaving:

dp (t)—— = p().(T—I 2r= py.) 6)

The limit of the derivative of the state probability vector p (/) as f tends

to infinity is taken to be the constant zero vector, leaving equation (2) in

which A = (T—l). The vector w is determined from the homogeneous

n
systems (1) and (2) by also satisfying 7, = 1. In applying the matrix

i=

tree theorem, the coefficients of the arcs of the spanning trees associated

with discrete time Markov Chains are the transition probabilities, whereas

in continuous time they are the transition intensities. Hence, the following

theorem may be stated for finite, irreductible, homogeneous Markov Chains.

Theorem: The stationary probability of state 7 of a Markov Chain is

equal to the total foci of node j in the associated graph, normalized by

the sum of all total foci.

This result is proven in appendix A by applying Mason's loop rule for

determinants in a flowgraph version of the system of equation (3).

An Example

Consider a service system consisting of two channels in series but with

no queue allowed before either channel, Assume a Poisson arrival rate of

X items to the system, some of which will be lost if the Ist channel is busy.

Both service channels have exponentially distributed service times, with

means 1/p, and 1/p» respectively. What are the steady-state probabilities ?

First draw the Markov graph corresponding to this system, ignoring

self-loop transitions since these cannot enter into any spanning trees. The

states of the system are indicated by characters describing the status of

each channel; 0 for empty, 1 for occupied, and 4 for channel 1 blocked after

a service completion. Note that self-loops cannot enter in to any trees,

therefore they will be omitted in all Markov graphs.
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   "9
Fig. 2. — Markov Graph of a Tandem Service System with no Queues.

In order to solve this system using the above theorem, (1) enumerate

the spanning trees at each state 7 and computeits total focus T (/) (2) sum

all of the total foci in some convenient fashion, and normalize the (/)

yielding the stationary probabilities +;. Hence:

at Soo there are 2 spanning trees

Suppose in this instance that p, = p, = p, and that rA/p = p. If

one divides each of the total foci by yu this will yield the following:

T (00) = 2
T(01) = 2p
T (10) = 2p + p?

T(1) = et
T’ (bl) = °°
Total = 2+4p+3p?=K

With the constant K, many system quantities can quickly be computed:

e.g. prob (idle system) = m9 = 2/K

prob (item is lost) = a4 + mia + mi = (3p? + 2 p)/K.

Example 2A: Birth and Death Model

The stationary probabilities of states in birth and death continuous

Markov Chains are well known [6]. However, using the Markov graph and

the total focus theorem, evaluation becomes exceedingly simple to do by

hand. This is due to the fact that nodes in such models have only one focus

apiece, and each with a simple structure, as witness the following specific

application.
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Fig: 3.

Suppose a system contains a group of 4 machines each subject to an

exponential breakdown rate A, and also that 2 repairmen are available, each

with exponential service rate ». Let state of the system, j, represent i
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(c)

8 8

Fig. 4. — Markoy Graphs and Foci in a Machine Repair Problem.

machines not working, and let p = X/p = 1/4. Suppose that the probability

that in the long run at least 2 machines are down is desired,(i.e., a machine

just breaking down must wait for service), i.e. the sum of 7, and z,.

In figure 4(a) the transition intensities (ignoring self-loops) of the

continuous Markov Chain corresponding to the problem, have been marked

using relative magnitudes based on p. Figures 4(b) and 4(c) show the arcs

of two of these foci, and values of T(/) proportional to the stationary

probabilities are obtained as follows:

TO) = 4*8*8*8 = 4*512
T(l) = 4*8*8*8 = 4*512
T(2) = 4*3*8*8 = 4* 192
TB) = 4*3*2*8 = 4* 48

T(4) = 4*3*2*1 = 4*6
Total = 4*1250

486
 From these figures the probability we are looking for is

Other quantities of interest may be computed as easily.

Recursive Use of the Total Foci Theorem

The method of using spanning trees for computing stationary probabi-

lities of arbitrary Markoy Chains is useful only for problems small enough

to be hand-solvable, such as in the previous examples. Since the number

of spanning trees in strongly connected graphs of some complexity grows
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very rapidly as the number of arcs and nodes increases (see for example the

enumerations in Harary [8]), computing total foci by enumerating spanning

trees will be clearly inefficient. However, ‘for regularly connected graphs

such as those Markov graphs arising from queuing theory, the total foci

may be computed recursively in a very efficient and useful manner. A

general discussion and an example provide evidence for this assertion.

First, consider the new spanning trees that are formed when

a

single

new node X is added to a strongly connected graph, as illustrated by

figure 5(a). In this example, there are only 2 arcs that connect X to the

original graph. It is clear that any spanning tree at X must make use of

the arc leading from Y to X. Now since any old spanning trees to Y

may be validly augmented this way, the total focus at X is:

T(X) = 4.T(Y) 6)

 

Fig. 5(a). — Adding a New Modeto a Strongly Connected Graph.

A similar argument for the new total focus at Y prevails, involving

the inclusion of the arc from X to Z to all of the original spanning trees

at Y; therefore:
T(Y) = 4.T(Y) (6)

An analogous argument applies partially to the new total focus at Z.

However, there may now be spanning trees at Z which include both the



32 Revue de Statistique — Tijdschrift voor Statistiek 13 (4) 1974

‘a’ and ’b’ arcs. In order to compute this factor, consider that any arcs
from Y in the construction of the spanning trees of 'T’ (Z) must be removed.
In fact, what has just been described is a graph theoretic concept known
as a forest.

Formally, a Spanning forest at nodes x,, x. , .., %; Of a graph G is a
subgraph that contains no circuits and all nodes of G other than My: gp Moyrwsey My
are the initial nodes of exactly one arc, while the latter are not initial
nodes of any arc. A typical forest is illustrated in figure 5(b). Similarly
to the notion of a total focus, call the sum of the products of arc weights
for each distinct forest at a set of nodes as a total forest, denoted by
T(S.9 Rhy my Khe

 

Fig. 5(b). — A Forest of Foci at X:, X:, ..., Xr.

Therefore, the quantity described above is T’ (Y, Z), and the newtotal
focus at Z is:

T(Z) = 6.1 (Z) + a.b.T(Y,2) (7)

Now consider the new total focus at node W. Arguments analogous
to those for T(Z) prevail for T(W), except that there is a further com-
plication with the term a.b.T (W,Y). If there were spanning forests
included in T’ (W, Y) that had a path from Z to Y (and necessarily not
to W), then the addition of arcs a’ and ’b’ to such a forest would pro-
duce a circuit through nodes X, Y, and Z. Such terms could not be in-
cluded in any new spanning tree at W.

Hence, there is need to define a new term T(W*Z, Y), which is the
sum of the arc products from ail distinct spanning forests at W and Y,
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such that W is a descendant (on a path from) Z. There may arise situations

whereit is easier to compute the equivalent quantity T (W, Y) — T (W, Y *Z).

In any case, the new total focus at W may be expressed as:

TW) = b.T (W) + 4.b.T (W*Z,Y) (8)

For any particular queuing formulation the equations for determining

the stationary probabilities by means of recursive spanning trees may be

developed in this manner. The general procedure is to consider four classes

of equations (a) those for the new states, such as equation (5), (b) those

for states neighbouring to these, such as equations (6) and (7), (c) equations

for background states such as for W above, and (d) equations that compute

as intermediate quantities, the various total forests.

This method becomes very difficult when considerations such as those

above in defining T’(W*Z,Y) become necessary for many background

states. This possibility increases when more than one state is added at

each iteration as may be required for multi-parameter queuing models. This

will be illustrated in a subsequent paper which solves the general k-phase

service system (see for instance [4]). Now consider an example that is

easily handled by this approach.

A 2-Phase Service Model

The method of phases has been extensively used to model queuing

processes involving the Erlang Distribution [7]. Consider a 2-phase system

allowing a maximum of » entries, in which theservice facility may be occupied

by only one item at a time, as described by figure 6. Notice that a, and ),

are the exponential rates of arrival and of phase service respectively, when

there are j items in the system. Hence, this model will allow for arbitrary

state-dependent behaviour. Thestates j, and j, denote j items in the system,

with the subscript indicating the current phase of service. Of course, an

empty state @ is required.

In figure 6(b) is illustrated the process whereby the stationary prob-

abilities are computed recursively. The method proceeds by growing the

2-phase service

4 4 in system
@ OQO-— Oo Oo 0

 

 

Fig. 6a.
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(b)

 

Fig. 6. — Markov Graph for 2-Phase Service System by Recursion.

Markov graph in stages, each subsequent stage yielding the total focus of
each stage when the queue capacity is allowed to increase by one. It starts
with the initial total foci of a system with no queue. For notational con-
venience denote the total focus of jf for example, as "Togs «

The initial total foci for the above system (no queue allowed)is simply:

Te S Byoby

Ty = Ty = a ob; (9)

since there is only one spanning tree at each state.

Next consider the inductive process of increasing the system capacity
to » from »— 1, as shownbythe dotted arcs in figure 5(b). If one assumes
that the previous total foci of states @ and fi fe for j = 1, 2, .., m—1
are known and represented by T’,, T’;, and T’,., then the total foci of
states , and », can be easily computed.

Spanning trees can be formed at 7, by only 2 ways: (1) using Dou
and the arcs leading from x, to (x—1), and from (7 —1), to n,, and
(2) using the previous total forest at nodes (2—1),, (2—1),, and the
arcs along the path passing through the nodes (n —1),, m2, (z7—1),, and

 

n,. Where the sum of the arc products of the previous total forest is
denoted by Forest’. Hence:

Tar = dur Bue Taeia + aya. by » Forest’ (10)
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At m,, however, there are 3 ways of forming spanning trees, each

utilizing the previous total foci at either of (7—1), ot (”— 1),, or the

aforementioned total forest. Hence:

Tao = Get On (Taga + Tas) + @aa- bn Forest’ (11)

Now, examine the remaining neighbourhood and background states.

Adding 2 nodes to the graph necessitates that they each contribute arcs to

any new spanning trees formed at these states. In addition to the two 4

arcs there are two new 4,arcs available . Recall, however, that circuits

cannot appear in a tree. This would necessarily happen, if for instance the

upper a1 arc were used, The lower a,., atc can only be used in forming

a spanning tree at node (2—1),. This is done by removing from con-

sideration the },., atc between the nodes (2 — 1), and (2 —1)2, leaving

the total forest referred to above. Hence:

Tray = B%-(Traa + a1 Forest’) (12)

Neither of the 2, atcs may enter into a spanning tree at (n—1)25

and all remaining states must be reached by means of a path from states

(2 —1), to (2—1), to (n— 1),. Therefore, if «e» represents any state

not formulated above, the remaining total foci to be recomputed can be

found from:
T. = b,.T. (13)

All that remains to be determined is the recurrence relationship for

the new total forest at nodes 7, and n,. New spanning forests may be

formed by (a) the old forest and the two d,., arcs, (b) using the upper

a arc and the previous total focus at (7 — 1) which isolates the node

m,, and (c) in an analogous fashion, isolating node 1,. Hence:

Forest = a%,,. Forest? + dya- (Pray + Tnays) (14)

Using the above equations, therefore, allows one to compute the stationary

probabilities of the 2-phase service system for increasing system capacities

and using transition intensities that may depend upon system state (or phase

if desired), This just requires normalizing the total foci at each stage.

To show that this is an efficient method the following experiment was cat-

tied out. Programs were written in Algol W to solve this queuing system

by both (a) the equations (9)-(14), and (b) Gaussian elimination for the

corresponding system of linear equations. (This is also useful method of

verification of the formulae).

The following is the execution time in milliseconds for each method.

The recursive spanning tree method has times that are necessarily cumulative
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induding normalizations at intermediate stages. The number of

_

states
reflect the maximum capacities of 7 = 2, 4, 8, 16 ...

 

 

Number of Recursive Gaussian
States Sapnning Trees Elinmination

5 21 msec 35 msec

9 83.» 159 »
17 284 » 1,133 »

33 1021 » 11,727. »
 

Quite clearly, the recursive method is much faster, apparently of a time
complexity of somewhat less than m*. Also, an advantage of the recursive
method over any closed analytic solution is its ability to use arbitrary values
for the transition intensities. The author has found the approach utilized
in the previous example applicable in several other cases, including bulk
queues, and &-phase service and arrival queues.

Several questions raise themselves at this point. How complex can the
Markov graph be, before this approach becomes computationally inferior
to solving linear equations ? Recall that one of the virtues of spanning
trees is the arbitrary manner by whichtransition intensities may be defined.
Does there exist an algorithm for recursively computing the spanning trees
for the complete graphs (or will orthodox determinant computations always
be faster) ? Does there exist a notation that can describe the structure of
Markov graphs (of queuing models) in such a way that it may be combined
with the total focus theorem in order to automatically yield the required
recursive equations ?

Conclusions

Described in this paper is a theorem that relates the stationary prob-
abilities of Markov Chains to the spanning three structure of their associ-
ated graphs in a simple fashion. So simple in fact, that an intuitive explana-
tion of the role that spanning trees play in equilibrium flow is desirable.
In addition to its elegance and its utility for hand calculations of small
systems, it has been shown that the theorem may be usefully applied tothe
highly regular graphs of some queuing formulations in a recursive manner.
This fact and some of the unsolved questions its use raises, make the recursive
spanning tree method of solving queuing formulations an attractive alternative
to traditional approaches.
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APPENDIX A: PROOF OF THE TOTAL FOCUS THEOREM

Preamble

Consider the differential rate matrix A of a continuous parameter Markov

chain. The derivative of the state probability vector is:

dp (!)
dt
 = pl.A (15)

Taking the Laplace transform of this equation and denoting L {Pp A}

as P(s) yields:
1

P(s) = —. [P(s). A +initial conditions] (16)
5

In the theorem, this set of equation (16) will be represented by a

flowgraph. A flowgraph represents linear equations relating variables in

a directed graph form, wherein the nodes represent variables and the coef-

ficients of the arcs represent the transmittance between variables. The

dependency of a variable X; upon another Xj in such a graph is given by

Mason’s loop rule:

> Lisao - 4isao

Dy = —vy (17)

where D is the determinant of the flowgraph,

where L,, 4) is the transmittance of the é-th path ofall paths from X, to X;,

di;ao is the &-th path factor, found by eliminating the loops touching

the nodes along the &-th path, from the expression for the
ij dc.

determinant.
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The determinant is given by:

D = 1 — (sum ofall loop transmittances)
+ (sum of the products of all disjoint pairs of loops)
— (.. disjoint triple products...)
(— 1)" (sum of all disjoint n-products of loops) (18)

where disjoint implies that loops have no nodes in common. Note that loop
corresponds to a circuit in graph theory. Circuits of only one arc will be
referred to as self-loops.

In order to get the stationary solution, the final value theorem will
be applied to the flowgraph dependencies of (16). It is at this stage that
the form of the solution switches to a &taph theoretic representation. Note
that the differential rate matrix A has the special Kirchhoff property that
the diagonal elements are equal to the negative of the sum of the remaining
terms in each respective row. Also (transition) intensity will be used syno-
nomously with flowgraph transmittance in this context. Consider figure 7
as illustrative of (16), the flowgraph of which shall be referred to as a
Markov flowgraph.

~a)/8

ay, /8

 

/s-a43~hayta) ))/s

Fig. 7. — Illustrative Markoy Flowgraph.
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Note the following characteristics of the graph: (i) The initial con-

dition is at state 1 for convenience and without loss of generality; (ii) The

self-loops at each node are the negative of the sum of the intensities leaving

that node. In the proof, the different coefficients in the self-loop term

will be considered separately; (iii) The dependency of the state probabilities

upon the initial condition as time advances to infinity will be formulated.

Denote as system focus the sum of the total foci at each node in a

Markov graph of an irreducible system. The theorem may now be stated

formally.

The Total Focus Theorem

Theorem: The stationary probability of any state j, in a finite, homo-

geneous, continuous time, irreducible Markoy Chain is the total focus of

the Markov graph at node j divided by the system focus.

Proof: The following lemmas which describe the characteristic terms

in a Markov flowgraph determinant will be utilized.

Lemma 1: In the expansion of the determinant, there do not exist

terms that include intensities whose corresponding arcs from a circuit of

length greater than one arc (self-loop).

Proof: First note that any number of other intensities may be present

in such terms, and that for every intensity there exists a component of a

self-loop which is opposite in sign. Also, note that in the expansion of

the determinant, the sign of a product which consists of & disjoint loops,

of which p are self-loops, is (— 1)*.(— 1).

Most important is the fact that there exists a 1—1 correspondence

between each term that involves a circuit, and the term involving components

of self-loops of the nodes of that circuit, those components which have the

opposite sign of the arcs of the circuit. For example, in figure 7, consider

the circuit (loop) (4:;, 442, 42). For every term involving its intensities

do4/S, Gy,/$, dyo/8, there is a corresponding term using —42,/5, — 43/5,

—d,,/5 from the product of three self-loops — (dz. + 421)/5, — 443/5,

and —4;,/s. Each term utilizes the nodes 2, 3 and 4. Therefore, any set

of loops that is disjoint to one of these terms is necessarily disjoint to the

other.

Now the contribution to the sign of any term from a circuit (not self-

loop) is always — 1, since the intensities of its arcs are positive and & = 1.

However, the contribution to the sign of the corresponding term using the



40 Revue de Statistique — Tijdschrift voor Statistiek 13 (4) 1974

self-loop components are always negative. Therefore, for every term deve-
loped from a circuit (any number of circuits, for that matter) there must
exist a term of the same magnitude, but opposite in sign. Therefore, all
such terms are cancelled out in the determinant expansion. Q.E.D.

Carollary: The only terms that will remain in the expansion will be
positive.

This follows from the fact that only terms composed of self-loops and
the 1 are left in the loop rule expansion.

Lemma 2: Noterms composed of x» or greater intensities can appear,
where 7 is the number of states in the chain.

Proof: A circuit would be formed by # or more intensities, or arcs.
Since only self-loops can be involved, only one component corresponding to
an arc from each self-loop can contribute to a product that would be dis-
joint. Now examine the graph formed by the corresponding arcs to these
components. Using a theorem of Berge, if ” edges (ignoring the direction
of arcs) were used then a cycle (non-directed) would necessarily form. In
our case, that this cycle would correspond to a circuit follows from the fact
that each node can betheinitial node of one arc only. A cycle that has
arcs going in different directions necessitates at least one node that is initial
for at least 2 arcs. Therefore the only terms including » intensities cor-
respond to circuits and must be cancelled by lemma 1.

Consequently, the only terms, in addition to 1, that will appear in the
determinant are products of all possible disjoint, self-loop components, whose
intensities do not embed any corresponding circuits, ie.:

det = 1 + Vi/s + Vi/s? 4 Vy/s (19)

where the V,, are the sums of all non-circuiral &-products of intensities that
do not have the same initial node(state). Equation (4) may be rewritten as:

det = — (2 EV, + PV, +. + Vi) (20)

Now consider the /-th path fromthe starting node to thestate of interest
7 (there must be at least one since the graph is strongly connected). Assume
it is of length /(/), 1 < /(/) < n, ie, it passes through /(/) + 1 nodes
including the start and j. According to the rule by which the path factor
is formed, the contribution of this path to the dependence of 5, upon the
start will be:

4, 1
sp GE ae PEEEbSV) (21)gh) gmt
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where d,/s') is the path transmittance (a product of intensities), and

V*, denotes the removal of any terms that possess an intensity of a node

along the path. No products containing more than » —/(#) components

will appear since that would necessarily require an intensity from a path

node, recalling that only one intensity from each node may appear in such

products.

In accordance with the loop rule, (21) ts now summed over all pos-

sible paths in order to find the overall dependence of p; (5) on the initial

state. If the final value theorem is applied to determine the long run

state probability, this yiels:

TS dy (orkf prrmayy, +. + V¥na)
 

 

is fj PQ) 4
mo um,

so gn-1 (get + gn? Vi + 3 — Viger) /27

n-1(i) siaye, foo. +b VAL i

= lim Sd, . fete 2ETes)
jen t (g258 sb 2 V5, eae Vie)

a, * V*n-101)

= —_—— j—l,..., # 22: ve i ) (22)

V,.; consists of all possible products of intensities such that there is

only one intensity associated with any node and no associated circuits are

formed. ‘Therefore, V,., consists of all foci in the graph (excluding the

initial arc) and is identical to the definition of a system focus. Now

consider a term d;.V%,-7;;)- Since the path associated with 4; contributes

1 (i) —1 intensities a (¢+ 1 only, being associated with the initial arc),

there are again » —1 intensities from every node excluding 5, in this term.

It follows that it is a focus at node s;. It also follows that the summation

over / represents the total focus at 5; because in every focus at s; there is

a path from any other node to s,, so that all foci at 5s; are represented in

the summation. This would be the case no matter where the initial state

occurred or indeed if all states had an initial probability. Therefore, it

follows that:
total focus at state 7

an ee 23
, system focus (23)
 

QED.
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