Belgian Joumnal of Operations Research, Statistics and Computer Science Vol. 22 n° 1-2

Construction of exact D-optimal designs
for linear regression models

using genetic algorithms

B. Govaerts P. Sanchez Rubal
D.C.T. Automation, Solvay S.A. avda Ramon y Cajal 81
rue de Ransbeek 310 E-28016 Madrid TLF, Spain

B-1120 Bruxelles, Belgium

Abstract

This paper reports the application of genetic algorithms to the construction of
exact D—optimal designs for linear regression models. D-optimal designs and the
2-exchange Federov algorithm are introduced. A modification of this algorithm,
based on simulated annealing, is then discussed. This procedure is taken as a
basis for the cross—over and mutation operators used by the genetic algorithm
that is proposed in this paper. Finally, the performance of this algorithm is
illustrated by applying it to the construction of exact D—optimal designs for the
2nd order model with 2 factors on the domain [—1.0,1.0] x [—1.0, 1.0].

Keywords : experimental design, Federov algorithm, genetic algorithms, optimal

design, simulated annéaling

153



1 Introduction

In industries and research laboratories experiments are organized daily in
order to design new products, improve existing ones or optimize industrial
processes. Experimental design deals with determining, before any experi-
ment is carried out, the set of experimental runs to be performed in order to
get a targeted objective as efficiently as possible, which generally means at
little cost.

For example, it may be desired to find the proportions of 2 additives A
and B to be mixed to a polymer that maximize the thermic stability of the
final product. The quantities of additives z4 and zp are usually called control
factors and the thermic stability y, the response. Many experiments would
solve this problem by using a "one factor at a time” experimental strategy
which means optimizing y sequentially with respect to z4 for a fixed value
of zp, then with respect to zp for a fixed value of z4, and so on.

This approach however is usually expensive, poorly informative and may
not lead to an optimum if A and B act in synergy. Experimental design
techniques advocate a more global approach for such a problem. They suggest
to assume, a priori, that the relation between the control factors and the
response obeys a mathematical model of the form y = f(z4,zp,6) and to
select in the domain of interest, a particular set of experimental runs, usually
called a design, which will permit to estimate precisely the parameters 8 of
the model and make predictions. Since the true relation is generally not
known, an approximation model must be used. It is usually chosen in the
class of polynomial models which are linear in their parameters. In the case
of the example discussed above, a second order polynomial of the form

y = Bo+ Baza + Bzn + Basz’ + PeeTh + fanTaTs + ¢ (1)

can be used, where ¢ stands for an error term.

Many types of experimental designs exist each of them being devoted to
a particular class of problems. They can be classified in two main categories:
classical designs and optimal designs. A wide range of classical designs can
be found in the literature (see for example Box et al. 1978, Box and Draper
1987, Khuri and Cornell 1987). Among the best known, we have the factorial,
fractional factorial, Doehlert, Plackett-Burman, central composite, simplex,

155



Box-Behnken and Taguchi designs. These designs have very good and well
known statistical properties. They have different shapes, usually symmetri-
cal, and are very elegant tools to solve a lot of experimental design problems.
If we assume, in our example, that the proportion of each additive may vary
from 0 to 5 %, three suitable classical designs are shown in Figure 1. Each of

—m Ad1 I Al

Factorial design Doehlert design Composite design
Figure 1: Three classical designs.

them is liable to solve the problem, which means estimate the model given in
(1). The choice between them will depend on the budget and the objective
of the experimenter.

Unfortunately, it turns out that classical designs are limited to ” classical
problems” which are not often met in industry. They are most of the time
expensive, need cubic or spherical domains of interest and do not accept
qualitative control factors, as for example the type of catalyst used in the
experiment.

Optimal designs, by their flexibility, can be used in such situations. Such
designs are built by choosing, in the domain of interest, a set of points which
maximizes or minimizes a given optimality criterion. This criterion is génf
erally expressed under the form of a functional of the variance-covariance
matrix of the model parameters like the D-criterion which amounts to min-
imize the determinant of this matrix. The algorithms used to solve the re-
sulting combinatorial problem are those of mathematical programming such
as exchange algorithms, branch-and-bound, ..., and so on (see St. John
and Draper 1975, Cook and Nachtsheim 1980, Atkinson and Donev 1992).
Recently, however, some emphasis has been devoted to the application of

156



new heuristic' algorithms like simulated annealing (Haines 1987, Meyer and
Nachtsheim 1988, Crary et al. 1992).

The goal'of this paper is to apply another class of heuristic tools, called
genetic algorithms, to the generation of exact D-optimal designs for linear
regression models on finite design spaces. Below, we first introduce the no-
tations and definitions that will be used throughout the paper. After having
presented the exchange algorithm proposed by Federov to generate exact
D-optimal designs, we then propose a2 modified Federov algorithm based on
simulated annealing and discuss the results that have been obtained by other
authors when: applying the simulated annealing approach to this problem.
Next, we introduce the principle of genetic algorithms and describe the pro-
cedure that we have implemented for the generation of D-optimal designs.
Finally, we illustrate its performance on the example presented in this intro-
duction before making some concluding remarks.

2 Definitions and notations

Throughout this paper, we will assume. that each observation y; of the re-
sponse can be-written as a linear function

yi=fe)B+e i=12..,N @)

of the control factors at a point z; = (zi1,.-.,2i) of the domain of interest
x C R*. In (2), f'(z:) stands for a function from R* to R?, continuous on
X, which depends on the form of the assumed model, 8 is a p component
vector of unknown parameters and the ¢ are independent and identically
distributed random variables of zero mean and variance o?. Letting f'(x:)
denote the i-th row of a matrix X, (2) may be rewritten

y=Xpf+e (3)

where y = (y1...yn) and ¢; = (& ... en).

A N-point ezact design on x, noted £V is a list of N elements z4,...,zn5 of
x not necessarily different from each other. ExN denotes the space of V-point
exact designs on .

157



It is assumed that the parameters § of the model (3) are estimated by
least-squares techniques. Those estimates are given by

B=(X'X)"X"y (4)

with variance-covariance matrix

- 2 :
V(B) = o*(X'X) = TMHEY) (5)
where
X'X
Ny

MEY) = (6)

is called the moment matriz.

Then, the predicted response at a given point « €  is given by
i) = £@)B ¢
with variance
Wi(@) = P PEXX) )
= T P@ME) (@) = Tod(a,€) )

where d(z,¢V) is called the variance function. By analogy, we need also to
define the covariance function

d(ziy zj,€N) = f(z)MH(EV) f(s;) 9)

The design problem then consists of choosing N experimental runs in
X in such a way that a specified criterion, which depends on z;,...,zy, is
maximized or minimized. In this paper, we will consider only the D-criterion.
A N-point exact design £V is said to be D-optimal on x if it is defined in the
following manner

¢ = arg max [M(¢Y)] (10)

which means that it minimizes the determinant of the variance-covariance
matrix of § or, equivalently, the volume of the confidence region for 3.

158



Of course, other criteria related to M(£V) can be used: A-optimal de-
signs minimize the trace of M~1(¢V), G-optimal designs minimize d,,, =
maXzey d(z, ¢V), and l-optimal designs minimize d, = rex 4z, EN)d,(2)
where 4 is a probability measure on x to be defined by the experimenter.
The A-criterion is proportional to the sum of the parameter variances, while
the G and I-criteria are respectively proportional to the maximum and mean
of the prediction variance over the experimental domain x.

Note that, for the sake of simplicity and since we will only consider N-
point designs in this paper, £V will simply be noted £ in the sequel.

3 The Federov algorithm

Several algorithms have been proposed to generate exact D-optimal designs.
Up to now, the most successful ones are exchange algorithms. They begin
with a N-point design £ and then add and delete one or more points of
the design in order to achieve an increase of the determinant. An extensive
literature is available on those algorithms (see for example Federov 1972,
Mitchell 1974, St. John and Draper 1975, Cook and Nachtsheim 1980). The
first of them to be developed, introduced by Federov, is presented below.

The Federov algorithm (Federov 1972) starts with a N-point non singular
design £, which means a design for which M(&) is a non singular matrix.
The i-th iteration consists of choosing a point of £ to be deleted, say z,
and a point z of x to be added to & in such a way that the increase of
the determinant of M(§;) is maximal. The procedure terminates when no
exchange which significantly improves the D-criterion exists.

Federov has shown that (Federov 1972)
M (&isa)l = IM(E)-(1 + A(z, 2,6)) (11)
where

A($1Zy€i) = —d(I,g;) + d(Z,&) - d(I,f{).d(Z,&')
+d2(27 2761') (12)

This formula shows that a new determinant can be calculated without having
to update the matrix M(£;) and compute its determinant from scratch. In

159



practice, the computations can be performed by having recourse to a QR
decomposition of X/\/Iv which can be updated at low cost when a point
is deleted from or added to . The use of this decomposition also allows a
quick computation of the matrix M~1(£). See Golub and Van Loan (1983)
for further details about the QR decomposition and its updating.

In what concerns the domain of interest x, it is generally continuous and
optimizing on such a space is tedious. For this reason, it is usually replaced
in practice by a discretization of it that will be referred to as the cendidate
set, noted x.. In this paper, we will assume that the domain of interest
has been discretized. According to our experience, this fulfils most of the
experimenter’s needs. Indeed, even when domain factors are continuous,
experimenters usually have in mind a discrete set of possible levels for each
factor and want to minimize the number of changes in the factor setting over
the whole experiment. ‘

Note also that the Federov algorithm does not guarantee the achievement
of a global optimum. It is thus advisable to start it from different initial
designs chosen randomly in EQ’C . Another way to avoid this problem is to
use a simulated annealing approach. Such algorithms have the ”ability to
migrate through a sequence of local extrema in search of the global solution
and to recognize when the global extremum has been located” (Bohachevsky
et al. 1986). In Section 4, we report the results that have been obtained by

different authors which have tried to apply this approach to optimal design.

However, before continuing, we first introduce here a modified Federov
algorithm, based on simulated annealing, that will be used later in the imple-
mentation of our D-optimal algorithm. For this purpose, two modifications
have been made to the Federov algorithm:

1. Rather than trying systematically all exchanges between all points of
the design ; and all points in the candidate set x., a subset of points
to be tested is chosen randomly in each set.

2. An exchange between two such points £ and z may be accepted even
if the function A(z,z,§) is negative. However, such an exchange is
only accepted with a probability which is inversely proportional to the
decrease of the determinant.

As a consequence, the simulated annealing variant of the Federov algo-

160



rithm starts with a N-point non singular design §; while its i-th iteration is
performed as follows:

¢ Pick randomly m, points in ¢;, m; points in x., and try all available
exchanges:between these points. Keep the pair (z,z) which maximizes

A(Ia z, fi-)-.
¢ Then apply the following:

- If 0< A(z, 2,&;), exchange = with z in &;.
— If —1'< A(z,2,£) <0, exchange £ with z in £ with probability

M@Hw%
M)

where:the parameter T, called the temperature, should be de-
creased by steps as ¢ increases, following a negative exponential
function for example. The decision to perform the exchange is
thus taken simply by generating a random number u in [0.0,1.0].
The exchange is then accepted if u < p. Otherwise, it is rejected.

p=u+A@amﬁ=(

- If A(z,z,£) = ~1, do nothing since M becomes singular.

The process is stopped when no significant change in M (£;) can be observed.

We have observed that this modified Federov algorithm is able to find
global optima which are ignored by the standard Federov algorithm, but also
that it has the default of being quite slower than the latter.

This simulated annealing variant of the Federov algorithm can also be
seen as a non deterministic variant of the K L exchange algorithm presented
in the literature (see e. g. Atkinson and Donev 1992). The KL exchange
algorithm suggests to reduce the large number of exchanges tested at each
iteration of the Federov algorithm (/N x (V. —1)) to A x L exchanges: at each
iteration, the K points of ¢; with the lowest variance d(z,&;) (1 € K < N) are
considered for exchange with the L points of x. having the highest variance
d(Z,E'-) (l S L S Nr: - 1)

161



4 From simulated annealing to genetic algo-
rithms '

Several authors have applied the simulated annealing technique to search
for approximately optimal designs (see for example Haines 1987, Meyer and
Nachtsheim 1988, Crary et al. 1992). They experimented on both discretized
and continuous design spaces. They did not only investigate D-optimality
but also G and I-optimality. The results were compared with those obtained
by currently used exchange algorithms.

By experimenting on continuous design spaces for 1st and 2nd order poly-
nomials, Haines (1987) shows that simulated annealing is much slower than
traditional heuristics, though as effective, for the D-criterion. On the con-
trary, it is judged equivalent on the G-criterion and much faster and better on
the I-criterion. More extensive experimentations by Meyer and Nachtsheim
(1988) yield the conclusion that simulated annealing can be ”simply imple-
mented and cheaply used to search for globally (D-) optimal designs on as
many as N = 1000 candidate points” on a discretized design space. However,
their results for continuous convex design spaces are not encouraging.

Usually, one run of simulated annealing is compared with several runs of 2
deterministic algorithm, like Federov’s, starting from different initial designs
(10 trials in Haines 1987). In spite of theoretical convergence results, which
are irrelevant in practice, the final solution yielded by simulated annealing is
subject to non-negligible variations when the starting point and the random
number sequence are varied (see for example Figure 9, p. 873, in Johnson
et al. 1989). Hence, it is advisable, though not common practice, to restart
simulated annealing several times. This fact is a first motivation for trying
an approach where a population of initial designs would be transformed in
parallel. Another attractive feature of such an approach is that it is con-
ceivable to try to mix together some designs in order to retain their ”good
characteristics” and eliminate "bad” experimental points. This idea led us
to try genetic algorithms (Holland 1975, Goldberg 1989).

162



5 Genetic algorithms

The principle of genetic algorithms is the following. Consider the problem
of maximizing a function F on a solution space which is a finite set. The
algorithm does not deal directly with the solutions but with an appropri-
ate encoding of them. Usually, each solution will be represented by a word
composed of letters chosen in a given alphabet. The simplest and commonest
example is a binary encoding in bitstrings (0-1 vectors). As the algorithm
essentially works by recombining pairs of words and altering some letters, it
is recommended to choose meaningful encodings in which letters or groups
of letters are associated with characteristics of the solution that are relevant
to the optimization problem.

The algorithm starts with a population ¢ of m encoded solutions ( §°),
cevy f,(.?)) where each solution EJ(-') € £9 is evaluated through its fitness which
is simply the value of F(EJ(-")).

At step 1, a certain number of ”good” solutions are first selected from £(9:
solutions are drawn at random from £®) with probabilities increasing with
their fitness.

The selected solutions are then mixed together by pairs through an op-
eration called cross-over. The simplest version, called 2-point cross-over,
consists of exchanging the letters appearing in two words at two arbitrarily
chosen positions. Each cross-over operation usually yields two children, two
new solutions, that will substitute "bad” elements in £¢) after being possibly
submitted to mutation. This last operation performed on a small proportion
of the normal children consists of changing arbitrarily some letters chosen at
random.

The "bad” solutions to be removed and substituted by the children are
chosen in £() with probabilities decreasing with their fitness. The remaining
elements from £() together with the children obtained by cross-over and
mutation constitute the new population £0¢+1).

The whole procedure stops after a predefined number of generations N,.
Normally, the average fitness of the population tends to increase at each step
due to the ”selection pressure”. Figure 2 below illustrates a typical step of
the algorithm although many variants departing from this basic scheme can

163



be found in the literature.

@rﬁnt population &0 I
]

Selection of good pairs of soluﬁonsj

l Cross-over I

¥

| Mutalion of some children |

1

Replacement of bad solutions

!

New population [ )]
[t |

Figure 2: A typical step of the genetic algorithm.

6 Description of the algorithm

Our algorithm follows the general genetic algorithm scheme with some pecu-
liarities described below. The solution space is the set of all possible N-point
designs =% . The chosen alphabet is x. which means that each point of the
domain of interest is a letter. Each solution £ is then coded simply as a list
of points in x.. The function F to be maximized is the D-criterion |M(£)|.
A description of each step of the general genetic algorithm introduced above
follows.

6.1 Generation of an initial population ¢©

The initial population £©, as well as the subsequent ones, is made of m non
singular designs (do)‘ .o, €9, Each design E;-o is composed of N points of

164



X. and is generated by first reordering x. at random and by choosing the first
N points in this list which ensure the non singularity of the matrix M(fﬁul).

Each design f;o) of £ is also characterized by its fitness F]-(O) =|M( _,E-O) ).

6.2 Selection

The selection step consists of drawing at random ! pairs (I < m) of designs
from the current population £(). This drawing is performed with replacement
and the probability p; of choosing a design is made proportional to its fitness
through the following expression

FO _ )
F] min
ey B - mEg)

min

(13)

b=

where F), = min{F{"[¢{) € £9}.

6.3 Cross-over

The cross-over operator is applied to each pair of designs, called parents,
drawn during the selection procedure. The choice of the cross-over operator
is crucial. Ideally, it should be able to generate new solutions that retain
on the average the ”good” characteristics of the parents. In experimental
design, a dream would be an operator that could select and paste together
two sub-designs from the parents and obtain a better design. In order to be
able to use formula (11), however, one is always forced to alter the parents
step by step through a sequence of 2-exchanges.

On the basis of 2-exchanges, there are a lot of possibilities to cross-over
2 designs. On the experience gained when using both the standard and
modified Federov algorithms presented in Section 3, we have chosen a single,
asymmetric operator with loss of information: it yields a single child (from
two parents), parents play an asymmetric role, and some of the design points
which are present in the parent designs are lost by the unique child.

More precisely, suppose that a pair (¢,,£;), where £; is the first drawn,
must be crossed over. The chosen operator consists of applying NV, iterations
of the modified Federov algorithm introduced in Section 3 by considering £,

165



as the design to be improved, £, as the candidate set, and taking m; = 1 and
my = N. This means that the following statements are executed NNV, times:

e Draw a point z in £, at random.

¢ Try all possible exchanges of z with points z of {; and keep z such that
A(z, z,£1) is maximized.

e Then do the following:

- If 0 £ A(z, 2,&), replace z by z in ;.
- If -1 < A(z, 2,£1) <0, replace z by z in £; with probability

p=(1+Az,z,6)%
- If A(z,2,&) = —1, do nothing.

The design ¢; obtained after those N, steps of cross-over is the child of ¢
and &,.

Note that, contrary to the simulated annealing algorithm, the tempera-
ture T, is kept constant during all the search procedure.

6.4 Discussion of the choice made for the cross-over
operator

The choice of our cross-over operator has been guided by the techniques which
are accepted to be performant in the statistical literature (Federov algorithm,
KL exchange algorithm, simulated annealing, ...). Our goal was a very
pragmatical one: find an algorithm able to find a D-optimal design from a
population of initial designs without having necessarily a ”pure” application
of the genetic algorithms. For this reason, the final product may seem quite
unorthodox with respect to the usual genetic algorithm standards. In this
section, we try however to argue that what we propose is well in the spirit
of genetic algorithms.

Our cross-over operator is probably closest to a uniform cross-over (Ack-
ley 1987, Syswerda 1989): it gives in principle the same chances of survival

166



or distruption to all substrings (of equal length). Such an operator seems
appropriate here as a design is just a list of points (in our coding) without
any intrinsic order. Moreover, in a D-optimal design, the contribution of a
point or a subset of points essentially depends on the other points in the
design. This means that a good design is not only a linear juxtaposition of
good sub-designs and that usual theory of schemata (Holland 1975) does not
apply.

A second feature of our operator is that it involves local optimization:
the randomized selection of exchanges between the parents is biased towards
the good exchanges. The mutation operator (see below) also presents such

.a feature. This is not unusual in genetic algorithms especially when dealing
with hard combinatorial problems. For the travelling salesman problem,
Grefenstette et al. (1985) devised such a locally optimized operator. Local
optimization is also an important element of parallel genetic algorithms of
Miihlenbein (1990).

The main argument for including local optimization in our cross-over is
the heavy combinatorial aspect: unlike in 0-1 codings, each "site” of a chro-
mosom can take a huge variety of different values (XN,). Moreover, previous
experiments with simulated annealing show that it is extremelly time con-
sumning to make completely random exchanges. This is, among all, because
the computing time needed to do an exchange is much larger than the time
needed to test an exchange. As large instances of the problem are to be
treated in practice (e. g. designs of 50 points from 1000 points candidate
points) it is very unlikely that pure random exchange could be of practical
interest. Note finally that our local optimization feature is carefully designed
for avoiding being trapped in local optima has they involve a part of ran-
domness inspired by simulated annealing.

To finish this discussion, one word about the asymetry of our cross-over:
in our view, the fact that the unique child is produced with major contribu-
tion of one of the parents is of secondary importance as all individuals have
a chance of being the important parent. Alternatively, the asymetry can be
viewed as an additional local optimization feature.

167



6.5 Mutation

The mutation operator is applied to a certain proportion of child designs.
It consists of trying to modify each chosen child by using information which
is not in the current population. In our case, we modify a child design ¢
by performing 2-exchanges between ¢ and randomly chosen subsets of the
candidate set x..

For each child design ¢, the mutation algorithm first decides if £ must be
mutated, each design having a probability P, to be mutated. If ¢ has to
be mutated, V,, points are drawn in ¢ and N, in x.. For each point chosen
in € one then searches for the best 2-exchange with one of the points of the
reduced candidate set. The decision to apply the exchange is taken along the
same rule as the one used during cross-over with a temperature T;, replacing
the temperature T,. Note that the candidate set is reduced to a subset (NN,
elements of x.) in order to diminish the amount of computations.

6.6 Replacement

This procedure consists of choosing I "bad” designs in the population ¢
and substituting them with the / generated children. A design {_5-‘) is chosen
for removal with probability

O _ FJ.(")
ﬁ' = imaa: l
T mFae - Ti, PO

(14)
where F{i), = max{F{|¢{) € £0}.

6.7 Parameter choice

From the steps described above, it appears that the following parameters
have to be defined:

m Number of designs in a generation or population.

[ Number of pairs selected for cross-over.

168



N. Number of points to be exchanged from the best parent designs during
cross-over.

Cross-over temperature parameter.
Child probability of mutation.

Number of points to be exchanged from the mutated design.

T.
Pr
Nin
N, Number of points in the reduced candidate set for mutation.
T Mutation temperature parameter.

Ny

Number of generations.

Note that unlike simulated annealing, the temperatures T, and T, remain
fixed. These 2 parameters only tune the facility with which a worsening ex-
change is accepted. The selection is taken in charge by the genetic procedure.
The choice of this set of parameters is discussed in Sanchez (1992) where their
influence on the computing time and the fitness of the final solution have been
illustrated on some simple experimental design problems.

7 Example

The example given in the introduction will be used to illustrate the present
application of genetic algorithms to the generation of D-optimal designs on
discrete design spaces. If we consider that the experimenter is allowed to
run a 9 points design, the problem consists of finding which points of the
square [0.0,5.0] x [0.0,5.0] will maximize the D-criterion for the second order
polynomial given in (1). In this case, the exact D-optimal design is the 32
factorial design given in Figure 1.

The standardized domain [—1.0,1.0] x [—1.0,1.0] has been discretized
following a grid of 11 x 11 points going from —1 to 1 by steps of 0.2. Note that
the best value of the D-criterion when the domain is reduced to [—1.0,1.0]?
is 0.00976. The algorithm has been run with the following set of parameters:
m=10,1=6,N.=5T.=07 P, =04, N, =5, N, =25, T, =0.2

169



and N, = 50. These values have been chosen on the basis of the experiments
accounted for in Sanchez (1992).

Figure 3 shows the evolution of the minimum, mean and maximum value
of the D-criterion over the 10 designs for each generation.

0010
1

D-Criterion
0.006 0.008
L 1

0.004
i

0.002
1

0.0

Figure 3: The evolution of the minimum, mean and maximum value of the
D-criterion.

Figure 4 gives the 10 designs for generation 1, 5, 10, 15, 20, 25, 30 and
35. The designs are ranked following their fitness. The optimal designs are
surrounded with double line frames. Nearly optimal designs are surrounded
with double dashed frames.

Those figures are self-comprehensible. However, some remarks are in
order here:

1. An optimal design is obtained after 28 generations.

2. At generation number 35, all designs are optimal (see Figure 4) but,

170



fn.ﬁ“

SN SER NS

BBBJEEE:

P w.

DBBD@BBBBB
R ICEIE NI SRR SRR SRR

aisjzsinlsizhnlniaieEr
P ) TR O 0 T Y
sl inhalslniciaiRiRE




after it (see Figure 3), the mutation operator introduces new design
points in the population which decrease the D-criterion of some designs.

3. Figure 3 shows that at step 27, all the designs have the same fitness,
F = 0.00957, which is not optimal. At this step, all the designs are
the same (see the first seven designs of generation number 25). No
improvement could be obtained there by cross-over. Oune can see from
Figure 3 that from generation number 27 to generation number 35, the
mean fitness function begins to decrease due to mutations and then
increases towards a better population.

8 Conclusions

This study should be considered as a first attempt to apply genetic algo-
rithms to the generation of optimal designs. Additional efforts are needed
to experiment it with a wider variety of models and master the choice of
the parameters. Nevertheless, in the few situations we have worked on, the
results have proven to be reasonable when compared with those obtained
by simulated annealing or with the Federov algorithm. From a computa-
tional point of view, we thus observed that our genetic algorithm approach
compared favourably with simulated annealing and Federov method.

An interesting feature of a genetic approach is its intrinsic parallelism:
several solutions evolve iteratively which is presumably at least as good as the
multi starting mechanism used by Federov or simulated annealing algorithms.
Since a population of desigus is finally obtained, instead of a single one, and
when diversity remains sufficient, one can imagine to choose between the
most interesting designs following other criteria. For this purpose, there exist
specialized genetic algorithms techniques called niching (Gold 1992) that aim
at retaining as many different global optima or, more modestly, distinct good
solutions, as possible in the final population. This is a potential direction for
further research.

The most interesting development however would be the design of a cross-
over operator that would enable to more deeply take into account the ge-
ometry of the parent designs during the construction of the child designs.
Without any doubt, it is in this direction that the contribution of genetic

172



algorithm could be really substantial and therefore, future effort should con-
centrates on this particular point.

Acknowledgements: The authors are grateful to M. Pirlot and M. Haest
for their substantial contribution in the writing of this paper. They also
thank the reviewer for his useful remarks and suggestions.

9 References

Ackley, D. H: (1987). A Connectionist Machine for Genetic Hill-climbing.
Kluwer Academic Publishers.

Atkinson, A. C., and A. N. Donev (1992). Optimum Ezperimental De-
signs. Clarendon Press, Oxford.

Bohachevsky, I. O., M. E. Johnson and M. L. Stein (1986). Generalized
simulated annealing for function optimization. Technometrics, 28, pp. 209-
217.

Box, G. E. P., and N. R. Draper (1987). Empirical Model Building and
Response Surfaces. John Wiley and Sons, New York.

Box, G. E. P.,, W. G. Hunter and J. S. Hunter (1978). Statistics for Ez-
perimenters: an Introduction to Design, Data Analysis and Model Building.
John Wiley and Sons, New York.

Cook, R. D, and C. J. Nathtsheim (1980). A comparison of algorithms
for constructing exact D-optimal designs. Technometrics, 22, pp. 315-324.

Crary, S. B., L. Hoo and M. Tennenhoure (1992). I-optimality algorithms
and implementation. Proc. 10-th Symposium on Computational Statistics.
Y. Dodge and J. Whittaker (Eds.), Springer Verlag.

Federov, V. V. (1972). Theory of Optimal Ezperiments. Translated and
edited by W. J. Studden and E. M. Klimko. Academic Press, New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, New York.

Golub, G. H., and C. F. Van Loan (1983). Matriz Computations. North
Oxford Academic, Oxford.

Grefenstette, J. J., R. Gopal, B. J. Rossmalta and D. Vand Gucht (1983).

173



Genetic algorithms for the travelling salesman problem. Proc. of the 2nd Int.
Conf. on Genetic Algorithms, J. J. Grefenstette (Ed.), Lawrence Erlbaum
Associates, Hillsdale, NJ, USA.

Haines, L. M. (1987). The application of the annealing algorithm to the
construction of exact optimal designs for linear regression models. Techno-
metrics, 29, pp. 439-447.

Holland J. H. (1975). Adaptation in Natural and Artificial Systems. The
University of Michigan Press.

Johnson, D. S., C. R. Aragon, L. A. McGeogh and C. Schevon (1989).
Optimization by simulated annealing: an experimental evaluation - Part 1:
graph partitionning. Operations Research, 37, 6, pp. 865-892.

Khuri, A. I, and J. A. Cornell (1987). Response Surfaces Designs and
Analyses. Marcel Dekker, Inc., New York.

Meyer, R. K., and C. J. Nachtsheim (1988). Constructing exact D-
optimal experimental designs by simulated annealing. American Journal
of Mathematical and Management Sciences, 8, pp. 329-359.

Mitchell, T. J. (1974). An Algorithm for the construction of D-optimal
experimental design. Technometrics, 16, pp. 203-211.

Miihlenbein, H. (1989). Parallel genetic algorithms, population genetics
and combinatorial optimization. Proc. of the 3rd Int. Conf. on Genetic
Algorithms, F. D. Schaffer (Ed.), Morgan Kaufmann Publ., San Mateo, USA.

St. John, R. C., and N. R. Draper (1975). D-optimality for regression
designs: a review. Technometrics, 17, pp. 15-23.

Sanchez, R. P. (1992). Application des Algorithmes Génétiques d la
Recherche de Plans d’Ezpériences D-Optimauz. Graduating Dissertation,
Université Libre de Bruxelles, Brussels.

Syswerda, G. (1989). Uniform cross-over in genetic algorithms. Proe.
of the 3rd Int. Conf. on Genetic Algorithms, F. D. Schaffer (Ed.), Morgan
Kaufmann Publ., San Mateo, USA.

174



