
Belgian Journal of Operations Research, Statistics and Computer Science Vol, 32 n° 1-2

General local search heuristics in

Combinatorial Optimization : a tutorial

M. Pirlot

Faculté Polytechnique de Mons

rue de Houdain 9

B-7000 Mons - Belgium

Abstract

The paper presents four general heuristic search strategies that can in princi-

ple be adapted to any combinatorial optimization problem. All these techniques,

Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA) and

Neural Networks (NN), can be described as local search heuristics. We provide

an elementary description of each of them together with examples of applica-

tions and a bibliographic and historic note. More advanced developments in the

framework of each strategy are outlined.

Keywords : Combinatorial optimization, heuristic search, local search, simulated

annealing, tabu search, genetic algorithms, neural networks

1 Introduction

1.1 Four general heuristics in combinatorial optimiza-
tion

In recent years, much attention and many papers have been devoted to four

general heuristics that are applicable in particular for ”solving” combinatorial
optimization problems. These general heuristics also called metaheuristics,

are Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA)
and Neural Networks (NN). We shall first situate the above methods in the
general panoply of tools that can be used to find satisfactory solutions to

combinatorial optimization problems. Doing this, we shall adopt the practi-
tioner’s viewpoint.

There is a huge amount of combinatorial optimization problems in all sec-

tors of management. A small.sample of them is: sequencing and scheduling

problems in production management, routing and transportation, plant loca-

tion, time-tabling, ..., and so on. Very often, the manager is not aware of or

not convinced by the possible benefits of using discrete optimization meth-

ods in industry. Quite often too, he has more important tasks or the above-

mentioned problems appear as detail] and the possible benefits as ”peanuts”.
However, times are changing and the international competition forces eco-

nomic actors to get interested in such details.

Consider now a production manager at a relatively low level who is in
charge of saving peanuts”. Suppose he is conscious of the possible benefits

and wanting to use some of the existing methods for solving his combinatorial
optimization problems. Very often, this good-willing person will be discour-
aged by one or several of the following problems (the list is not exhaustive):
the effort in time and mathematical education for finding and understanding
a suitable method may be judged not worth the possible return, there may be
no method which is adapted to the complex constraints of the real situation,
the methods may be inapplicable in practice due to inappropriate computing

time or deceptive solution quality or lack of robustness.

As a consequence, quite frequently one will not try to use any optimiza-
tion method but simply implement some simple rule (of good practice, rule

of thumb, ...) in a program that will deal with the problem. In the most

sophisticated and/or expensive solutions this program will receive the name
of expert system. In such a context, the interesting point with the general

heuristic strategies mentioned above is that they generally yield relatively
good results for a not too important effort (in computation time, under-
standing, implementation, ...). In particular, they are often flexible enough

to be able to deal with complex particular constraints.

These considerations seem a sufficient motivation for examining such

methods. On the other hand, one should also refrain from excessive enthusi-
asm. These methods are new and appealing. They rely on analogies with op-

timization mechanisms in ” Nature”: physical systems able to evolve towards

a state of minimal energy (simulated annealing and neural networks), incest
prohibition (tabu search), natural selection and species evolution (GA). Some
of these methods (SA, GA, NN) are supported by theoretical results which
guarantee their good behaviour. Hence, it is no wonder that each method

has eager supporters who consider that their preferred method cannot be
beaten. This is certainly not a reasonable attitude because analogy cannot

be considered a justification (”"comparaison n’est pas raison”), the theoret-
ical results are not in general relevant for the actual use of the methods in
practice (more detail on that below) and one can (easily) find problems on
which any of our four heuristics is not competitive. In conclusion, one should

not consider the four general heuristics as a substitute to exact methods, or
other types of heuristics: there are cases where it is not advisable to use

them because there are much better specific or general approaches. They are
*not a panacea but are potentially useful tools” (paraphrasing Johnson et al.

1991, p. 405).

From a theoretical viewpoint also these methods are interesting: the ex-
isting theoretical results though not relevant for practice suggest that trying

to understand why these methods work or fail is not hopeless.

1.2 Organization of the paper

The four heuristic search strategies are exposed in Sections 2, 4, 6 and 8
in a not too technical language. Examples of applications are provided for

each method as well as a bibliographic and historic note which aims at ori-
enting the interested reader in the literature. The reader who only wants an

10

overview of the subject can skip Sections 3, 5 and 7 where more advanced
topics are dealt with as well as more technical issues are addressed. The
ambition with this paper is to provide the reader with a good starting point
for applying one or several of these methods in practice.

1.3. Local search strategies

All four general heuristics we are concerned with can be considered to some

extent as local search strategies: it is quite clear for SA and TS, somewhat less
for GA and NN. Essentially, local search consists in moving from a solution

to another one in the neighborhood according to some definite rules. The
sequence of solutions can be called a trajectory in the solution space.

For definiteness, let us consider the problem of minimizing a function
F(z) on a finite set of points X. This can be considered a general statement
of a combinatorial optimization problem. A local search strategy starts from

an arbitrary solution z,; € X and at each step n, a new solution z,4; is

chosen in the neighborhood V(z,) of the current solution z,. This implies
the definition of a neighborhood structure on X: to each x € X is associated

asubset V(r) C X called the neighborhood of x. For instance, if X is a set of
binary vectors and © € X, the neighborhood V(Z) of = may be the set of all
solutions z € X that can be obtained from F by flipping a single coordinate

from 0 to 1 or conversely. By convention, we suppose that no solution is

a neighbour of itself, i.e. c ¢ V(x), Ve € X. Alternatively, one can say

that the neighbours of z are the solutions that can be obtained from z by
an elementary move. The evolution of the current solution z,,n = 1,2,...

draws a trajectory in X.

The most common way of choosing a new solution 7,4, in the neighbor-

hood of z, is to pick (one of) the best one(s), i. e. a solution 2,4, € V(z,)
with F(tazi) < F(z), Ve € V(2,). Then, tn4, becomes the next current

solution if it is not worse than gq, i.e. F(tn41) < F(an). Otherwise, the

search is stopped. This strategy is usually called a descent or a steepest de-

scent strategy. For further comparison purposes we give a formal description

below. F* will denote the best value of F up to step n and 27 is such that

F(ct) = Fe.

11

Descent Algorithm

© Initialization: select x; € X.

e Step n =1,2,...: 2, denotes the current solution.

a) Find the best 7 in the neighborhood V(z,).

b) If F(z) < F(z,) then F becomes the new current solution z,4, at
step n+1 and the best value F* of F (up to step 7) as well as c*
are updated.

c) Else: stop.

Note that the choice of a good neighborhood structure is generally impor-

tant for the effectiveness of the process. The main weakness of the descent
algorithm is its unability to escape from local minima. This is symbolically
illustrated in Figure 1: all solutions in the neighborhood V(z,) are worse
than z, although, further away, there exists a global minimum of F which
cannot be reached under the descent rule.

F(x)

V(xn)

Xn *

Figure 1: Trapped in a local minimum.

Simulated Annealing and Tabu Search are local search strategies ex-
plicitely designed for avoiding such a situation. This implies temporary
degradation of the objective function.

12

2 Simulated Annealing (SA)

2.1 General presentation of Simulated Annealing

When using Simulated Annealing (SA) algorithms one does not search for
the best solution in the neighborhood V(z,) of the current solution z,: one
simply draws at random a solution z in V(z,). If F(x) < F(2,), « becomes
the new current solution. Otherwise, one of the two following alternatives is

selected according to some probabilistic law: x becomes the current solution

with probability p(n) or 2, remains the current solution with the comple-

mentary probability 1 — p(n). Typically, p(n) decreases with time (n) and
with the size of the deterioration of F (= F(x) — F(z,)).

The idea of SA comes from thermodynamics and metallurgy: when a

metal in fusion is cooled slowly enough it tends to solidify in a structure
of minimal energy. The same principle is at work in SA: at the beginning,
almost all moves (i. e. all updating of the current solution by a solution z
randomly chosen in its neighborhood) are accepted. This allows to “explore”

the solution space. Then, gradually, ”temperature” is decreased which means

that one becomes more and more selective in accepting new solutions. At the

end, only the moves that improve F are accepted in practice. Schematically,

SA is the following alteration of the Descent Algorithm.

Simulated Annealing (SA)

e Initialization: Select an initial solution x, in X

Pe e& F(a,)

woe 2

e Step n =1,2,...: 2, denotes the current solution.

— Draw z at random in the neighborhood V(z,) of zy.

— If F(z) < F(z,) then 2,41; - 2.

If F(z) < F* then F™ — F(z) and z* — =.

— Else, draw a number p at random in (0, 1].

13

If p < p(n) then tay, + 2.

End: If stopping condition is fulfilled then stop.

In order to make the algorithm operational, a few tactical decisions have
to be made.

a) Choice of the acceptance probability p(n).

By analogy with thermodynamics, a Boltzman-like distribution is gen-
erally chosen:

1
p(n) = ex(— aay ahr)

where AF, = F(z) — F(z,) and T(n) is the so-called ”temperature”
at step n.

b) Choice of a "temperature schedule”.

Temperature T(n) decreases with time in order to exclude or almost
exclude "bad moves” at the end. A classical schedule for decreasing T is

illustrated in Figure 2. Starting from Tp, the temperature is maintained

T(n)

1
T;

n

Figure 2: The most common temperature schedule.

constant for L consecutive steps. Then it is decreased by multiplying it
by a constant factor a (0 < @ < 1) after each series of L steps. Hence,

after kL steps, the temperature is

T(kL) =T, = a Ty

14

This implies the setting of three parameters, To, a and L, which will be
respectively referred to as initial temperature, cooling rate and length

of plateau.

c) Choice of a stopping rule.

Here are two variants of a stopping rule that are both natural and
commonly used:

e Stop 1: If F* was not improved by at least €, % after K, consec-

utive series of L steps, the procedure is halted.

e Stop 2: If the number of accepted moves is less than 2% of L for
K, consecutive series of L steps, the procedure is halted.

For the sake of completeness, let us recall that the definition of the neigh-
borhood structure is an important decision in this local search algorithm.
The influence of a particular parameter choice will be discussed in Section
3.2.

2.2 Bibliographic and historic note

The idea of applying the annealing principle to optimization problems is

due to Kirkpatrick, Gelatt and Vecchi (1983) and Cerny (1985) who worked
independently. They both applied SA to the Travelling Salesman Problem.

Since then, a huge amount of literature has been devoted to reporting about
applications of the method in many domains and to presenting variants and

enhancements of the basic technique. Extensive bibliographies can be found

in Collins et al. (1988) and van Laarhoven and Aarts (1987). Several books
have also been devoted to SA (see e. g. van Laarhoven and Aarts 1987,
Azencott 1992, Vidal 1993, and Siarry and Dreyfus 1989). Special mention
is due to a series of papers by Johnson and other authors (Johnson et al.
1989, 1991, 1992) where a very careful and methodologically sound job is

done in comparing SA with other heuristics on four classical problems: graph

partitioning, graph coloring, number partitioning and the travelling salesman
problem. We come back to this work in the next section.

15

2.3 An example: graph partitioning

We present the graph partitioning problem investigated in Johnson et al.
(1989): partition the vertices V of the graph G = (V, £) into two equal size
subsets V, and V2 in such a way that the number of edges with endpoints in

both subsets be minimal.

There are different manners of applying SA to this problem. The most
natural is the following. The solution space X is the set of bipartitions
(V1, V2) of V with |W] = |Va| = |V|/2. The objective function (to mimimize)
is the number of edges with one endpoint in Vj and one endpoint in V2. The

neighborhood of the current solution (Vj, V2) is the set of all bipartitions
that can be obtained by exchanging a vertex from V, with a vertex from Va:

VWi= VU {te} \ {oy}, YW = VU ty} \ tr} (with ¢ € Va, y € VA). The size
of the neighborhood is |V|?/4. The other tactical decisions can be made as
explained in Section 2.1.

Note that an alternative implementation is the following. Instead of re-
stricting the solution space to bipartitions in subspaces of equal cardinal-

ity (balanced bipartitions), one allows for “illegal” solutions (Vi, V2) with

[Vi| 4 [Va]. The solution” space is the set of all bipartitions and the objec-
tive function includes a term which penalizes unbalanced bipartitions:

F(V,,V2) = number of edges with one endpoint in Yi

and one endpoint in Vz + y(/Yi| — |Val)?

where is a positive constant to be tuned. The neighborhood of a (non-

necessarily balanced) bipartition is made of all bipartitions (VJ, Vj) with

(Vj = VU {a} and V} = Va\{2}) ot (Vi = Va\{y} and Vi = VaU{y}), 2 © Vs
y € Vy. The advantage of this implementation is to provide new routes for
escaping from local minima and to reduce the size of the neighborhoods.

As SA is a randomized algorithm, it is advisable to make a large number
of independent runs. That’s what Johnson et al. did in comparing the second

implementation of SA with a local search algorithm (with the same neighbor-

hood) and the Kernighan-Lin specialized heuristic (see Johnson et al. 1989
and also Section 3). Roughly speaking, they conclude that SA outperforms
local search; it beats Kernighan-Lin on random graphs if running time is not

taken into account and works slightly better if comparable times are allo-
cated. However, on geometric random graphs (i. e. graphs with a special

16

kind of geometric structure, see Johnson et al. 1989), SA is outclassed by
Kernighan-Lin. Anyway, the running time which is necessary for an effective
annealing is usually long compared with the time needed by deterministic
heuristics.

3 More about Simulated Annealing

3.1 Introduction

” Annealing is a potentially valuable tool but in no ways a panacea”. This
is the conclusion of Johnson et al. in their second evaluation paper on SA

(Johnson et al. 1991, p. 405). It is clear indeed that the theoretical results
that insure the convergence of SA to the optimal solution are irrelevant in
practice because the (necessary and sufficient) conditions on which they rely
are strikingly violated in any practical application.

It is also true that SA is not competitive in some problems (an example
of which is number partitioning studied in Johnson et al. 1992) and that a
certain amount of.work is needed to tailor SA to each particular application.
This may appear as deceptive for the (lazy) people who dream of a final

algorithm for solving all combinatorial optimization problems. Looking at
SA on a more positive mood, one has to consider that its successes are
remarkable, that a general heuristic can compete with the best specialized

ones on a problem is surprising. But in my opinion, the main interest of SA
is not there: it is that due to the conjunction of simplicity and effectiveness it
offers a unique chance of understanding why a general heuristic can ever work
or more precisely to characterize the (instances of) problems on which SA is

competitive. While more relevant theory can also be expected, the simplicity

of SA allows in addition for rigorous experimental work: Johnson e¢ al.’s
following statement is certainly a lot more valid for more complex approaches
like Genetic Algorithms or even Tabu Search: "Although experiments are
capable of demonstrating that the approach performs well, it is impossible

for them to prove that it performs poorly. Defenders of SA can always say

that we made the wrong implementation choices” (Johnson et al. 1989, p.
869).

17

As soon as solution space, objective function and neighborhood structure

have been chosen, the only non-parametric choice in a SA implementation

consists of selecting a cooling schedule family. As this, as well as parameters

tuning, has been seriously investigated in some special cases, we report on

these investigations in Sections 3.2 and 3.3 and we summarize the main
practical conclusions. We also give a short non-technical overview of some
existing theoretical results in Section 3.4. This is because this theory, even
irrelevant in practice, has been and remains a source of inspiration in the

trials for improving the method or providing generic solutions to the tactical
choices involved. Note also that a similar role is played by the thermodynamic

analogy in particular for suggesting adaptive cooling schedules (see Section
3.3.2).

3.2 Tuning the parameters of the basic model

In this section, we formulate some comments and practical recommendations

in view of choosing the parameter values in the basic implementation of SA

with geometric cooling schedule (see Section 2.1).

3.2.1 A graphical tool

Notice first that an elementary but useful tool for eliminating bad parameters

choices is a plot of F* (the best observed value up to step n) against time,
i.e. the number 7 of steps. Such a graph usually looks like illustrated in

Figure 3 in the case of acceptable geometric schedule.

An initial but not too long period of slow improvement is considered typi-
cal of a good choice of the parameters. Similarly, at the end it is advisable to
wait for a clear sign that no substantial further improvement will be obtained
before stopping. Note that non geometric cooling schedules yield different
shapes (see Jolinson et al. 1989, p. 884). Note also that it is an a posteriori
evaluation tool.

18

De
Figure 3: Typical behaviour of F* during annealing with geometric cooling

schedule.

3.2.2 Initial temperature

The initial temperature Tp of a geometric cooling schedule (it is also true for
other schedules) is generally determined in order that the initial probability
for accepting bad moves be approximately equal to a prescribed value po.

This can be done by trial and error before starting the annealing process:
the algorithm is run with a tentative initial temperature, the acceptance rate
(of bad moves) is computed and Ty adapted. Then, the algorithm is restarted
with the modified value of TJ) and so on until an acceptance rate near po is

found. This procedure was used by Johnson et al., but they report (Johnson

et al. 1991, p. 405) that the acceptance rate computed on the basis of a

few iterations is not a very robust estimator of pp. They suggest for fixing

Ty to use problem specific algorithms or computations based on the desired
value of po and simple characteristics of the problem such as the size of a

neighborhood.

How can we choose a value for pg? It is commonly thought that it should

be high. The idea is that the system must be allowed at the beginning to visit
any region of the search space without much constraint. It was thought that
this initial quasi-random walk was useful preparatory work which did not
improve the objective function but would prove profitable in the long term.
This seems not to be confirmed by experimentation. For example, in the
graph partitioning problem, Johnson et al. have tested values of po ranging

from 0.1 to 0.9 and conclude that from pp = 0.4 on, there is no improvement

19

in the final solution quality while computer use grows substantially. As a
consequence, they worked with py = 0.4. It is probably advisable to make
some preliminary testing in each specific problem. If one is not too much

concerned with reducing computer time, high values of po will do no harm.

3.2.3 Length of plateau and cooling factor

For different reasons it is sensible to link the length L of the plateau in
a geometric schedule to the average size of the neighborhood. In view of
effectiveness, when temperature is low and almost all bad moves are rejected
it should be given a reasonable chance of trying all the neighbours of the
current solution at least once. This option is also a sensible way of taking
into account the size of the instance at hand as long as it leads to feasible
computer times.

Turning now to the interrelations between L and the cooling schedule
a, it is clear that they have positively correlated effects: increasing LZ or a
tends to increase the number of iterations and should also improve the final

solution. More precisely, doubling L or taking the square root of a should

approximately double the total number of iterations. This is confirmed by

Johnson et al. (1989, pp. 878-881) with the correction that increasing a (by
taking square roots) seems to add less computer time for an equal improve-

ment of F*. These observations are only valid in a certain range of variation

of E and a.

When a and/or L are increased beyond a certain point, improvement

of F* becomes so slow that better results are obtained by allocating the
available computing time to several shorter runs of the algorithm (starting
from different initial solutions) rather than to a single very long run. For
a fixed amount of computing time, there is some evidence of the existence
of an optimal compromise between the number of runs and their lengths
(see Johnson et al. 1989, pp. 880-881). It is clear however that SA is a

very computer intensive algorithm and that too short runs do not yield good

results.

For being a little more specific, the values of £ and a used in graph

partitioning experimentation by Johnson et al. are

L = 16x the average size of a neighborhood

20

a = 0.95

Those values are robust: mild variations of L and a do not yield dramatically

different results and the same values are used for all instances.

In conclusion, there is no single and general rule for choosing Z and
a. However, due to the (extrapolated) robustness of the algorithm, a little
preliminary experimentation quickly yields acceptable values. The general
qualitative remarks above can also help.

3.2.4 Stopping criterion

Usual values of’, and € in the stopping criteria Stop 1 and Stop 2 (resp.)
range from 1 to.5 (%). The constants Ky and K2 should not depend on the
plateau length L.provided this length is linked to problem size as indicated in
Section 3.2.3. Johnson et al. (1989) use Stop 2 with e, = 2(%) and K, = 5.
It is advisable to control a posteriori the choice of the parameters by looking
at the graph of’ Fi against time and making sure that annealing was not
stopped too early.

3.3 More: structural options and some improvement

opportunities

Besides parameter setting, there are relatively few degrees of freedom in a
basic SA implementation: the choice of a solution space, an objective func-
tion, a neighborhood structure and a cooling schedule. We briefly give some
general advice concerning the three former and extend a little more on the
latter. The last subsection is concerned with a few technical improvements

on the basic algorithm.

3.3.1 Solution space, objective function and neighborhood struc-

ture

Only general comments can be made at this level. Let us emphasize the
fact already mentioned that better results can often be obtained both on

21

the viewpoints of solution quality and computer use, by modeling some con-

straints as soft constraints, i.e. through penalties introduced in the objective

function. Such penalties are monotone functions of the degree of violation of
the constraints and vanish when the constraints are satisfied. This modeling
option not only has an incidence on the objective function but also on the

solution space as illegal or unfeasible solutions are considered. It is hoped

that the solutions obtained at the end of the algorithm will satisfy the con-
straints. If not, a way out is to use a specialized heuristic to transform an

illegal solution into a solution that satisfies the constraints, without loosing
too much on the objective function. It can also happen that solutions which
nearly satisfy the constraints are acceptable in practice. This is the case for
instance in complex scheduling problems where the due dates are in general
soft constraints.

The major reason for using soft constraints is to get simpler or smoother

neighborhood structure. If one restricts oneself to feasible solution it may
well be complicated and/or time consuming to generate a feasible neighbour
to the current solution. Moreover, if the move is a complex transformation of
the current solution, the change in the objective function resulting from the
move may require explicit computation of the value of F on the new solution

which can also take time. In extreme cases, one is even unable to generate
a feasible initial solution. In graph coloring, for instance, a feasible solution
is a partition of the nodes in classes such that two nodes in the same class

may not be linked by an edge. Whether there exists such a partition in any

fixed number of classes (>2) is a NP-complete question.

Besides the possibility of easily generate it, another desirable property
of the neighborhood structure is to allow for easy travelling throughout the
space. In particular, it should be possible to access any solution from any

other one by a finite chain of neighbour to neighbour moves.

3.3.2 Cooling schedules

The geometric cooling schedule used in the basic SA implementation is as

far as one can imagine from the schedule that would theoretically insure
convergence of SA to the optimal solution (see Section 3.4). In this schedule,

22

temperature is decreased logarithmically with time i. e.

_ Cc

~ 1+ log(k)-

where & = 1,2,... is the index of the series of L steps at the same temperature

T,. Johnson et al. experimented on the graph partitioning problem with this
"logarithmic schedule” as well as with the two following ones

Ty

e A schedule where temperature is decreased linearly with k.

e A schedule where the probability of accepting a move decreases linearly
with k.

At least for the graph partitioning problem, there is no improvement w. r. t.
the usual geometric schedule (even when allowing more than twice the same
computer time for the logarithmic schedule) and on the other hand, a lack of
robustness can be observed. The quality of the final solution is sensitive to
the choice of the initial temperature which is a major drawback when there
is no rigorous way of assigning precise values to the parameters.

In view of Johnsons’s results there seems to be no reason for renounciating
to the geometric schedule. There is however a different category of schedules

called adaptive which have been proposed. The idea is to monitor dynami-
cally the temperature evolution: decisions are taken after each observation

period (a plateau) and temperature is varied on the basis of the intensity
of the search during the passed period. Roughly speaking, temperature is
slowly decreased or maintained constant when quick progresses are made. It

is more rapidly decreased when the performance stagnates.

The following simple adaptive schedule was experimented with by John-
son et al. (1989, p. 882): one observes the best value and the ayerage value in

each series of L steps. If a series ends up with at least one of these observed
values better than the corresponding ones of the preceding period, the series

of L steps is repeated without temperature change. Otherwise, temperature

is decreased by the usual factor a. This schedule did not provide better final
solutions although computer use was substantially increased.

More sophisticated attempts which in general rely on the thermodynamic

analogy were made by several authors among which we point out Lam and

23

Delosme 1986, Huang et al. 1986, Pedersen 1990 (for further references see

also van Laarhoven and Aarts 1987). All those approaches are based on the

idea that quasi-equilibrium should be reached before temperature is varied
and the change in temperature should be slow enough to allow to reach
quickly a new quasi-equilibrium state for the new temperature. Although
their authors claim that their approach leads to more or less spectacular

improvement there is no methodic comparative study of such schedules in
the available literature.

3.4 Possible technical improvements

We present a few suggestions for improving the efficiency of the basic SA al-
gorithm. These suggestions were made by different authors and are evaluated
in Johnson 1989 (pp. 881-888).

3.4.1 Cutoffs

Considering that it is the number of accepted moves rather than the number
of trials that is important, it is proposed to stop the series of trials of a

plateau as soon as a certain number of moves have been accepted. This

number is chosen as a fixed proportion (= cutoff parameter) of the plateau
length L. The main effect of a cutoff is to avoid spending much time at

high temperature. In this, it is analogous to starting at lower temperature.

Johnson et al. compared both approaches: for equal running times there

seems to be little difference in solution quality. There can be an advantage

in using a cutoff if it is more difficult to estimate a good initial temperature

than a good cutoff parameter.

3.4.2 More efficient choice of the moves

If solutions in the neighborhood of the current one are chosen purely at
random, there is a risk in the case only one neighbour is acceptable, that

we miss it in a series of L trials. A way of avoiding this in the special case

of the graph partitioning problem is to choose the moves according to a
random permutation of the set V or vertices: in each series of |V| trials each

24

vertex will be considered for a move exactly once (in the order defined by the
random permutation), This procedure seems to give better solution quality
in equal computation time. It amounts to introducing an additional element

of optimization in the local search (see also Section 5.3 for the description of a
"locally optimized SA” algorithm which does not choose the moves at random
but selects the best solution in a randomly generated subneighborhood of the
current solution). Note that this approach is only applicable when there is a

uniform description of all possible moves from any solution (i. e. a description
which is invariant when the current solution is varied).

Another trick for improving effectiveness in the end of the schedules is the
rejection-free annealing of Green and Supowit (1986). At low temperature

much time is lost in considering moves that will be rejected. The proposed

alternative is the following: for each move z, compute its probability of accep-

tance p;. Let P be the sum of all p,’s. This yields a probability distribution
on the set of all moves, each move 2 receiving a probability p;/P. Select a
move according to this distribution and accept it automatically. Green and
Supowit prove that this is equivalent to ordinary annealing. It leads to time
savings at low temperature. This interesting proposition is however difficult
to apply in general as the possibility of efficiently computing and updating
the p;’s is problem dependent.

3.4.3. Approximate exponentiation

As SA needs long runs to be efficient, a non-negligible speedup can be
obtained by replacing the exact evaluation of the acceptance probability

Pr = exp(—AF,/T(n)) by an approximation. The best thing to do is to
use a table of precomputed exponentials. Johnson et al. do as follows. The
domain of variation of AF, is bounded by T(n)/200 (move with negligible
probability of acceptance: ~ 0.5%) and 57'(n) (move with negligible proba-
bility of rejection: ~ 0.5%). Moves for which AF, is outside these limits are
deterministically rejected or accepted. One computes 200AF,,/T(n), rounds
it down and looks at the corresponding value of the exponential in the ta-
ble. For the graph partitioning problem, using this table saves 1/3 of the
computing time without altering solution quality.

25

3.4.4 Better than random initial solutions

Starting from better than random initial solutions is inviting. SA theorists
have claimed that the initial solution was ”forgotten” (due to the ergodicity
of a Markov chain, see Section 3.5) and it seems to be generally the case:

e. g. in the graph partitioning problem, starting from the solution of the
Kernighan-Lin algorithm does not lead to better final solutions than starting
from random solutions. However, in the ”geometric” graphs experimented
with in Johnson et al. (1989), initial solutions obtained through a special

heuristic that takes into account the graph structure can be used to get

better final results. The initial temperature must be chosen low enough in
order not to destroy the initial structure of the solution (see Johnson 1989,
pp. 885-887 for more details).

3.5 An outline of some theoretical results

The behaviour of SA has been theoretically studied by many authors. We
try to give a brief overview of the main trends.

The dynamics of evolution of the current solution in the search space
during SA execution is that of a rather well-behaved Markov chain: the
transition from the current solution z to another solution y (at current tem-
perature T) is governed by the transition probability matrix Pp(z, y) defined

by

0 fy @V(z) andy #a
1

.
<

Pr(z,y)= 4 ify # ty €V(z) and AF <0

Woy exP(-AF/T) ify #z,y € V(x) and AF >0

1—YigePr(z,z) ifysa

This corresponds indeed exactly to what is done in practice: a solution y

is selected at random in V(z), each y € V(x) having probability 1/|V(z)|
of being chosen. Then, AF = F(y) — F(z) is computed and if AF < 0,
y is accepted (case 2 in the definition of Pr). Otherwise, a second random

decision is made independently with probability exp(—AF/T) which yields
the third case in the definition of Pr. The last case, the probability of

remaining in z, is obtained by complementation to 1.

26

Two simple hypotheses insure that the Markov chains (at any fired tem-

perature TJ’) tend to an equilibrium:

e Hypothesis 1: Symmetry of the neighborhood system i. e. y € V(z)
iff z € V(y).

e Hypothesis 2: Connectivity, i. e. it is possible to reach any solution
from any solution in a finite number of neighbour to neighbour moves.

Under these two hypotheses, the evolution governed by Pr at any constant

temperature T tends to a stationary distribution

_exp(- £2)
Pa(2) = FT exp(—F)

This means that when enough time has elapsed, the probability of being in

solution z is approximately pr(z) or equivalently, the proportion of the time

spent in each solution z when the evolution is stabilized is pr(x). If one looks
at the behaviour of probability pr when T is decreased to 0, one sees that
pr concentrates more and more on solutions of "low energy” i. e. values of

F near to the minimum. In the limit, po is concentrated erclusively on the
global minima:

0 if F(z) # Fain
paz) = { en if2e {ye X: Fly) = Fam} =: Xmin

What does a SA algorithm in practice? It is not a single (homogeneous)
Markov chain as J’ varies and hence the transition probability matrix Pr.

One can look.at SA in two ways: as a series of homogeneous Markov chains
with different transition probability matrices or as a single inhomogeneous
Markov chain (with transition probability matrix evolving with time).

3.5.1 Series of homogeneous Markov chains

On each plateau of the cooling schedule illustrated in Figure 2, a Markov

chain with constant transition probability matrix Pr and unique stationary

distribution pr is run for L steps (= transitions). If L is long enough, one may

consider that one is not too far from equilibrium at the end of the plateau.
Suppose that T is not too abruptly decreased at the end of each plateau
i. e. when the system is in ”quasi-equilibrium”. It is conceivable that the
system will not be too much perturbated and will quickly reach a new quasi-

equilibrium state for the new temperature aT’. Iterating the process until

temperature is low, the probability of any solution z will be approximately

pr(z) with small T which means that solutions far from the minimal value
of F will almost be impossible.

Such an intuitive reasoning was formalized by several authors: Aarts and
van Laarhoven 1985, Lundy and Mees 1986, Otten and van Ginneken 1984,
Mitra e¢ al. 1985. Some conditions on the cooling schedule must of course
be imposed: those by Mitra ed al. (1985) are the most general and least
restrictive (see van Laarhoven and Aarts 1987, pp. 17-26).

3.5.2. Inhomogeneous Markov chain

In this approach, the dynamics is that of a single Markov chain with time-
dependent transition probability matrix: T is not bounded to follow a sched-
ule as illustrated in Figure 2. It may even be adapted at each step. The

problem is to give conditions under which the chain will end up in a global
minimum with probability 1. Geman and Geman 1984, Gidas 1985, and Ha-

jek 1988 investigated the problem. Later work is concerned with more general

processes. We present here Hajek’s necessary and sufficient conditions on the
cooling schedule that guarantee convergence to a global minimum.

We first define the notion of reachability at a certain height: solution y
is reachable from solution z at height h if there is a sequence of solutions

I = Zp, 7,..., 2m = y for some n > 1 such that 241 € V(zi),7 =0,...,n—-1
and F(2;) <A for alli =0,...,n. This is a very intuitive notion: it means

that one can walk from z to y along a path that does not let climb above
height A. The weak reversibility property is the following: y is reachable from

z at height h iff x is reachable from y at height A (for all z, y, A).

If the neighborhood structure is connected and weakly reversible and if

the cooling schedule T(n) is a non-increasing sequence of strictly positive

real numbers tending to 0, then the Markov chain with non-homogeneous

transition probability matrix Pri.) will end up in a global minimum of F

28

with probability | iff the cooling schedule T(n) is such that

Ss exp(=-) = 00
n=l T(n)

where d* is the maximal difference of height one can have to climb for escaping
from a local minimum by the easiest path.

Note that the condition on the schedule essentially assumes logarithmic
decrease. For instance

Cc

1") = Tati
satisfies the condition provided C > d*.

4 ‘Tabu Search (TS)

4.1 General presentation of Tabu Search

Tabu Search (TS) is another local search strategy designed for escaping from
local minima: even if there is no better solution than the current solution
Z, in its neighborhood V(z,), one moves to the best possible solution z in
V(#_) or a sub-neighborhood V'(z,) C V(z_) in the case where V(z,) is too
big to be explored efficiently. If the neighborhood structure is symmetric, 1.
e. if z, belongs to the neighborhood V(z) of z whenever z € V(z,), there is

a danger of cycling when at the next step we explore V(z): there is indeed
a chance that «, could be the best solution in V(z) in which case we would
come back to z, and from then on, oscillate between z and z,. To avoid

this situation and more general cycling situations, the idea is to store the
last pairs (z,,2) of solutions in a list called "tabu list”. If the pair (z,, x) is
in the list, the move x — z,, is forbidden for a certain number of subsequent

moves, This principle raises some technical problems: storing a complete

description of the last solutions visited and testing for each candidate move
whether it is the converse of a move recorded in the list might be rather time
consuming. An alternative is to store a characteristic or an attribute of the
moves (it can be the transformation performed on the current solution, e.

29

g. flipping the ith coordinate value of a binary vector from 0 to 1). This
can prove too restrictive or alternatively too permissive as illustrated in the

examples below (borrowed from de Werra 1988).

Example 1: Consider the search space X which is the set of pairs of
distinct elements of the set A = {a, b,c, d,e} and have a look at the dynamics
illustrated in Table 1. Suppose the converse of the last 3 transformations

current solution | t ormation

—ec

ae

Table 1: Example 1.

are tabu. A move is the substitution of an element of A by another in a

solution: e. g. "6 —c” means that bis replaced by c. Starting from ab € X
and performing successively the moves represented in the second column of
Table 1 yields the solutions below ab in the first column. The tabu list

is updated at each step, the attribute of the last move (” transformation”)
enters the list and the most ancient attribute in the list leaves it (as soon as
it is full i. e. contains 3 transformations). When solution de is reached, the
tabu list prohibits to move to ae which was not visited before: tabu is too
restrictive in this case. 2

Example 2: Let X be the set of triplets of distinct elements of the same
set A = {a,b,c,d,e} and consider the dynamics shown in Table 2. The

maximal length of the tabu list is fixed to 3. The tabu list is unable here to
prevent cycling. a

Despite the possible lack of effectiveness illustrated in the second exam-

ple above, the tabu list is usually a list of one or several attributes of the

30

| current solution | transformation | tabu lst

abc ced dee

abd bee cob,

d—c

acd db bed,
ce bh,

dec

abe

Table 2: Example 2.

recently visited solutions or (of the converse) of the most recent moves: these
attributes should be chosen accurately. As shown in the first example above,
the prohibition of solutions with a given attribute is likely to be restrictive in
excluding much more solutions than the just visited one. To correct the bad
consequences of this (not all consequences are undesirable), one offers the
possibility of overwriting the tabu status of a move when it leads to a good

enough solution. More formally, we define an aspiration level that describes
what is a good enough solution. Two elementary examples of aspiration

criteria are:

e Asp 1: A solution is above the current aspiration level if it is better
than any solution met before (as measured by the objective function

F).

e Asp 2: (This criterion may be used when the tabu list consists of pairs

associated with moves x — y and composed of an attribute of the
converse move y — z and the value F(z)) If the attribute of the move
y’ —» x is in the tabu list, one allows for the move if F(z’) < F(z).

Summarizing the above, we have the following scheme for a typical TS

algorithm.

31

Tabu Search (TS)

e Initialization: Select an initial solution z; in X

F* e F (21)

Ea
z — TT

Tabu list TL is empty.

e Stepn = 1,2,...: z, denotes the current solution. F is used to store the

best accessible value of F met during the exploration of the subneigh-
borhood V‘(z,). Z denotes the solution in V'(zq) for which F(Z) = F.
Initialize F to oo at the beginning of each step.

For all z in V’(z,),

If F(z) < F and (If the move (z, — =) is not tabu or if the move
is tabu but passes the aspiration criterion) then F « F(z) and
Tee.

Inti — FT

If F < F*, then c* + Zand F* — F.

The appropriate characteristic of the move (z, — 2,41) enters the tabu
list once the first entered characteristic has been removed from the list

if the list was full.

e End: If the stopping criterion is fulfilled, then stop.

The list of the tactical choices that have to be made is somewhat longer

than for SA. In addition, the usual choices are less standard. More positively,

there is more room for creativity in a TS application. The principal decisions
to be made are:

e The specification of a neighborhood structure and possibly of a sub-

neighborhhood structure (for the subneighborhood V’(z,) a generic
possibility is to pick at random a fixed number of solutions in V(z,)).

e The choice of the move attributes to be recorded in the tabu list.

32

e The choice of the tabu list length.

e The choice of an aspiration criterion.

e The selection of a stopping rule (usually the total number of iterations
is fixed a priori).

4.2 Bibliographic and historic note

The idea of TS is due to F. Glover (Glover 1986). Similar views were devel-
oped by P. Hansen (Hansen 1986) who formulates a steepest ascent /mildest
descent heuristic principle. A comprehensive description of TS can be found
in Glover et al. (1992) as well as a bibliography of about 70 papers and books

including many application reports. Although the literature about TS is not
as extensive as about SA, it remains that the method has been applied to a

large variety of combinatorial optimization problems like scheduling, trans-
portation, electronic circuit design, graph coloring, neural networks, ..., and

so on. As far as'I know, there are no theoretical results such as convergence
results about TS.

4.3. An example: graph coloring

The best way of.understanding exactly how TS works is to look at an appli-
cation. A simple and convincing example in graph coloring is due to Hertz

and de Werra (1987). The problem is to find a coloring of the vertices V of
a non-oriented graph G = (V, £) such that the same color is not assigned to
two adjacent vertices and the minimal number of colors are used, Hertz and

de Werra consider alternatively the problem of coloring the vertices with a
fixed number / of colors and minimizing the number of faults, i. e. adjacent
vertices which are painted the same color. Hence, coloring adjacent vertices

with the same color is accepted but penalized. The authors’ strategy con-
sists in finding a perfect coloring (without faults) for a large initial value of
1 then find successive perfect colorings for smaller and smaller |. The proce-
dure stops when the algorithm is not able to find a coloring with the current
number of allowed colors.

33

In this implementation, a "solution” z is any l-partition of V: z=

(Vi,.--,V,). Clearly, in this approach, most of the solutions are not ad-

missible (i. e. are not perfect colorings). This is just like in the second
implementation of SA in graph partitioning. The objective function F (to
minimize) is defined on all /-partitions z = (Vi,...,Vi) of V:

t

F(2) = DBI
where E; is the set of edges whose endpoints are both in V;. The neighbor-
hood V(z) is the set of all /-partitions which differ from z = (V,...,V)) by
the transfer of exactly one "bad vertex” from some class V; to some other

class V; (a "bad vertex” in V; is a vertex linked with another vertex of Vj).
During local search, not all solutions of V(x) are evaluated (there are too
many of them). A sample V’(z) is drawn at random from V(z): the size of
the subneighborhood V'(z) is a parameter of the algorithm. Only non-tabu
solutions or tabu solutions that satisfy the aspiration criterion are accepted

in V(r). The best solution from V'(z) becomes the new current solution.
The tabu list (TL) records the vertices transferred during the last & iterations
together with their color before the transfer. The TL prevents a vertex trans-
ferred during the last k iterations from coming back to its original color. The
aspiration criterion is satisfied (and the tabu status of a transfer overwritten)

when a move from solution z to solution 2’ is such that F(z’) < F(z) and
never in the past has a move been improving a solution of value F(z) to one
of value as good as F(z’).

Note that some tricks are used to reduce computation time: the neighbor-
hood random generation is stopped as soon as is found a non-tabu solution
which is better than the current best solution. Special star-shaped configu-
tations are searched for and reduced, i. e. some local optimization work is

done on the current solution (see Hertz and de Werra 1987).

The authors experimented on random graphs whose number of nodes
ranges from 100 to 1000 and whose edge density is 0.5 (= probability of

presence of each edge). They took the "magic number 7” for the length & of
their tabu list, the size of the randomly generated subneighborhoods grows

with the number of nodes of the instance at hand. The results are compared

with those obtained by an implementation of SA which was run on the same
instances: better results are obtained with TS and using less computer time

34

(Johnson et al. 1991 do not confirm this appreciation, see also Section 5.1
below). The same authors also developed a so-called combined method which
looks interesting and will be briefly discussed in Section 5.2.

5 Tabu Search and mixed heuristics

5.1 Comparing heuristics

Let us come back to and extend a statement already made in Section 3.1

about SA: none of the current general” heuristic principles is a panacea

and all of them need substantial work to be tailored to a problem. Experi-
mental work indeed tends to show that the way different heuristics compare,
strongly depends on their implementation and the problem instance to which
they are applied. In their exemplary investigations on the application of SA

to graph coloring, Johnson e¢ al. (1991) compare implementations of SA us-
ing different neighborhood structures and a classical heuristic that has been
randomized (XLRF). Their conclusion indicates that the competition winner
varies according to factors like the instance size, the edge density (for random
graphs), the geometry of the graph (see Johnson et al. 1991, Table VIII, p.
399). Johnson et al. also experimented with the TS algorithm described in
Section 4.3 but do not confirm Hertz and de Werra’s conclusions: they find

no general domination of TS over SA. A suggested explanation is that their
implementation of SA is substantially faster than Hertz and de Werra’s.

The clearest conclusion to be drawn from these experiments is probably
that pragmatism should prevail: there is no reason for claiming the absolute

superiority of any existing general heuristic. What we want to illustrate in

this section is that it is not only allowed but can be profitable to depart
from the orthodoxy and build up more complex but competitive algorithms

that integrate some original principles of TS, SA or other heuristics: neither
SA nor even TS is tabu! And this is also true for Genetic Algorithms and

Neural Networks. Experiments which tend to mix the different methods will

probably develop in the next years and some new general heuristic search

principles and algorithms will hopefully emerge. This could also contribute
to bridge the gap between Operational Research and Artificial Intelligence.

35

5.2 A combined algorithm for graph coloring

For large graphs (more than 500 vertices), Hertz and de Werra in their already
mentioned paper (Hertz and de Werra 1987) suggest to-use TS to solve partial
problems included in another coloring graph algorithm (presented in Chams
et al. 1987). In this approach, TS not only helps in coloring subgraphs
but also in constructing a large independent set, i. e. a subset of vertices
such that no pair of them is linked by an edge. The global graph coloring

algorithm works as follows. Fix an integer g. Construct an independent set
VY which is as large as possible. Repeat this construction in V \ VU, yielding
V;. Then, in V\ (VU WY) yielding Vs and so on, until the number of vertices

in V\(WUUWUV3U...) is smaller than g. All vertices of each set Vi, V2,

..., receive the same color and the remaining (< gq) vertices are colored by

using the TS algorithm described in Section 4.3.

TS is able to find a large independent set in the following way. Let
G' = (V',E’) be the graph in which we search for a maximal independent
set. A (non necessarily admissible) solution z is a bipartition (5,5) of V’,
where S, the candidate independent set, is evaluated by F’(z) = F’(S) = the
number of edges linking two nodes within 5. Solutions z in which no ”bad”

edges are present (/"(z) = 0) and |5S| is as large as possible are searched
for. The algorithm starts with an estimation of the size p of the maximal
independent set in V’ (theoretical results on random graphs are used). The

solution space X is the set of all bipartitions (5,5) of V’ with |S] = p. The
neighbours of a solution z = (5,5) are obtained by exchanging a vertex from

S with a vertex from S. Two tabu lists of equal length are kept: T(9) (resp.
T(S)) is the list of the last k vertices which arrived in S (resp. S). Let
Zn = (Sn, Sn) denote the current solution at the beginning of step n. One
ranks the vertices of S, in decreasing order of their number of neighbours in
S, and the vertices of 5, in increasing order of their number of neighbours

in S, (not in S,,!}. The first vertex in 5, \ T(S,) is exchanged with the first
in 5, \T(S,) The algorithm stops as soon as F’ = 0 or after the maximal
number of allowed iterations. If an independent set has not been found
(F' > 0), the algorithm is restarted with p = p — 1.

According to Hertz and de Werra who report on experiments made on
samples of random graphs (density 0.5), it is advisable to use the combined
algorithm when the number of. nodes is well above 500. In such a case, the

36

search for large independent sets is stopped when the number of not yet
colored nodes falls below q = 500. Johnson et al. (1991, p. 400) suggest that
there is much room for further improvement both with new implementations

of TS and SA and with hybrid algorithms like the one just described.

5.3 About heuristic search principles

It has been shown in the preceding section that it could be helpful to inte-
grate general heuristics into a specialized algorithm. We will now illustrate
the possible fertilization due to mixing techniques borrowed from different

general heuristics, namely TS and SA. The particular examples described

below can be interpreted as successful applications of general principles of
heuristic search,

According to Glover (1986) a good heuristic search strategy is a succession
of phases of diversification and intensification, the alternance being governed

by the exploitation of historic information. Typically, the descent algorithm

lacks diversification phases while the "intensification” is permanent (local op-
timization). Both TS and SA allow to explore different regions of the search
space instead of being trapped in local minima: the tabu list as well as high
initial temperature are diversification devices. In SA, the relative importance

of intensification w. r. t. diversification is increasing with time as tempera-
ture is decreasing. Tabu Search has built-in elements of diversification and
intensification and it is easy to imagine additional ones, e. g.

e To penalize already visited regions. For instance, in looking for a max-
imal independent set, one could replace F(z) = F(S) = number of
edges in.S by

F(z) = F(z) +a) u;

where w,.is the number of iterations with node? in S and a is a weight-

ing factor that generally varies with time (taking historic information
into account or not).

e Vary the length of the tabu list during the search (taking historic in-
formation into account or not).

37

A systematic review of various ways of implementing the above principle

in TS is provided in Glover et al. (1992). The principle however applies, in
principle, to any kind of heuristic and is not specific to TS. To illustrate this,
we briefly describe an application in which the above ideas were applied to
SA and to TS.

The problem can be characterized as a homogeneous grouping one. A set

of J objects described by J characteristic properties has to be partitioned in
groups of equal size K in such a way that the mean value of each character is
approximately the same in each group. The problem can be obviously treated

by SA or TS with a natural neighborhood structure: the solution space is the
space of all partitions in subsets of size K and the neighborhood of a solution
zg (i. e. a partition z) is the set of all solutions that can be obtained from z
by exchanging two objects belonging to two different groups. A modification
of the classical SA procedure, called "locally optimized SA” is obtained by

replacing at each step the solution drawn at random in the neighborhood

of the current one by the best solution in a subneighborhood of the current
solution (like in TS). This constitutes an additional intensification element
inspired from TS. On the other hand, in the basic implementation of TS for
this problem, the determination of the objective function (which measures
the degree of homogeneity of a partition) after one move is bounded above:

if the best move in a subneighborhood causes the objective function to de-
teriorate by more than an a priori fixed amount A, one generates another

subneighborhood and searches for another move. A straightforward modifi-
cation of this scheme consists in varying A during the course of the algorithm.

This was done by introducing a ”cooling schedule” for A. In this case as well,

it was another intensification element that was added. Both modified algo-
tithms led to substantial improvement as compared to the original SA and
TS simpler versions (see Liégeois et al. 1992).

6 Genetic Algorithms (GA)

6.1 General presentation of Genetic Algorithms

A genetic algorithm (GA) may be described as a mechanism that mimics
the genetic evolution of a species. The main difference with the two former

38

approaches, SA and TS, is that GA deal with populations of solutions rather

than with single solutions. An obvious advantage is intrinsic parallelism but
it goes beyond letting solutions evolve independently in parallel: solutions
do interact, mix together and produce "children” that hopefully retain the
good characteristics of their parents. GA can be viewed as a form of local
search but in a generalized sense. It is not the neighborhood of a single so-
lution which is explored but the neighborhood of a whole population: this is
something different from the union of the individual neighborhoods due to

interaction. The main operators used to generate and explore the neighbor-
hood of a population and select a new generation are selection, crossover, and
mutation. We describe those operators below. Note that the GA literature
is rich in terms borrowed from Genetics, sometimes with a little of pedantry:

we shall limit our use of the genetic jargon to a minimum.

The first peculiarity of GA is that the genetic operators do not operate di-
rectly on the solution space: solutions have to be coded as finite-length strings
over a finite alphabet. This makes little difference with common optimization
practice in some situations like mathematical programming problems with 0-

1 variables as a natural coding of a solution is a bitstring containing the

values of each of the boolean variables in some predefined order. However,

this is less easy in some other situations and above all, the straightforward

coding is not always the most appropriate. From now on in the framework of
GA, when we write "solution” we mean "coded representation of a solution”

unless otherwise stated. In the GA literature a string representation of a
solution is named a “chromosome”. The feature associated with each string

coordinate is a ”gene” and the value of a gene is an ” allele”. Each position
in a string is a "locus” (in the simplest cases, each gene is associated with a
locus).

A GA starts with an initial population of say N solutions and let it evolve
yielding a population of the same size N at each iteration. Very roughly, the

(n + 1)th generation of solutions is obtained from the nth generation X™
through the following procedure: the best individuals (= solutions) from
X) are selected, crossover operations are performed on pairs of them. This

yields an offspring of solutions which will replace the bad individuals of the

current population. Mutation is generally performed on a small proportion

of the ’children”.

39

Let us go a little more into the detail. Each solution of the current
population {z1,...,2,} is evaluated by its "fitness” which can simply be the
value of the objective function in a maximization problem. More generally,

the fitness of a solution is an appropriate monotone transformation of its
evaluation by the objective function. Let F denote, in this section, the

fitness function which we want to mazimize over the solution space.

The selection of the "best” individuals from a given population is done

according to their fitness but not in a deterministic way: solutions are drawn
at random with replacement from the current population with a probability

that increases with their fitness. A simple choice for such a probability is as

follows: for all i = 1,...,N, x; is selected with probability

F(z) _ Frin

Der (F(z) — Fin)

where Frin = min{F(z;),j = 1,...,N}. Pairs of selected individuals are
then submitted (with some probability y) to the crossover operation. There
are lots of possibilities for defining this operator depending on the problem

and its coding. The commonest example called ”2-point crossover” works as

follows. Suppose the solutions are coded in bitstrings of length 8 and that
the following pairs of individuals were selected

01
11

011001
000110

Two positions, say 3rd and 5th, are chosen at random and the characters be-

tween those two positions (inclusively) are swapped, yielding two ” children”
solutions. In our example, we swap the characters at the 3rd, 4th and 5th

positions in both strings

01/01 1/001 0 1]0 0 ojoo1
1 110 0 0)1 10 11/0 1 141 10

Each child is then submitted to mutation (with some probability 4). The

simplest mutation operator consists of choosing a position at random and

substituting the character in that position by another character from the
alphabet. For instance, working on the 8-positions bitstring

010110041

40

and performing a.mutation at position 6 yields

01011101

The final step in the generation of a new population is the substitution
of “bad” individuals of the current population by the (possibly mutated)
children. The “bad” individuals are selected according to their fitness in

a randomized way (much as was done for selecting the good individuals):
solutions are drawn at random without replacement with a probability that

decreases with their fitness. This procedure yields the (n + 1)th generation.

The algorithm generally stops after a preassigned number of generations have
been produced.

As a summary, we present a schematic description of a typical GA. Note

that function F (= fitness) is to be mazimized on the space X of coded
solutions. Many variants of this basic scheme can be found in the literature.

Genetic Algorithm (GA)

@ Initialization:

Select an initial population X) = {2{,. + 2h} CX

| max{F(z!?),i=1,...,N}

roe arg max{ F(z!"),i =1,...,N}

e Step n = 1,2,...: X() denotes the current population of solutions

a) Selection of good individuals from X™:

Let {yj,j = 1,...,2M} be 2M individuals drawn with replace-

ment from X'), the probability of choosing a”) being an increas-

ing function of F(z”).

b) Crossover:

For k = 1,...,M, the crossover operator is applied to the pairs
(Yok, Y2e+1) With probability x: this yields M pairs of children
(Z2k, Z2e41) (which are identical to their parents with probability

(1 — x)).

41

c) Mutation:

For 7 = 1,...,2M, the mutation operator is applied to z; with

probabilty yu: this yields 2M (possibly mutated) children w;,7 =
1,...,2M@ (which are identical to z; with probability (1 — 4)).

d) Substitution of the bad individuals:

Draw 2M individuals from X™) without replacement, the prob-

ability of choosing a) being a decreasing function of F(a).
X+ is obtained by substituting the 2M selected bad” individ-
uals from X') by the children {z;,j =1,...,2M}.

For all j = 1,...,.N, if F(2*) > F*, then

Fre F(z")

re oer)

e End: If (n+ 1) > a fixed number of iterations, then stop.

6.2 A didactic example and some general remarks

We illustrate the above complicated procedure on a simple example borrowed
from Goldberg (1989, pp. 14 sq.). Consider the problem of maximizing
F(z) = 2? on the set of integers {0,1,...,31} and let a GA be used for this
purpose. An easy coding of the solutions is by bitstrings of length 5. Let us
start with the initial population of 4 solutions in Table 3: it was drawn at
random by coin tossing.

In this example, the whole population is replaced by children at each
iteration (i.e. 2M = N = 4). The good individuals selected for reproduction

are shown in Table 4. Note that af) appears twice. A one-point crossover
operator is used: all characters positioned after the selected cutpoint are

swapped. The cutpoints for the two pairs of parents are shown in Table 4.
The crossover probability x is assumed to be 1 and the mutation probability

is z = 10-7. No mutation is simulated.

The average fitness progressed from 293 in X to 439 in X@. Pro-
ceeding in this way and due to the selection mechanism designed to favour

42

j | population {2 j =1,...,4} | solution | F(z)

1 01101 13 169

2 11000 24 576

3 01000 8 64

4 10011 19 361

Table 3: Initial population.

crossover
j=l,...,2M site =w

0110([1 4 01100

100 11001

4
11/000 2 11011

2 10/011 10000

Table 4: First iteration.

the fittest individuals it can be hoped that the final population will contain

very good solutions. In the example a very good solution (11011 = 27) is
already produced after one step. It is crucial however that sufficient diver-

sity be maintained in the population in order to permit the exploration of as
many "good regions” of the solution space as possible and not to restrict the

search to the vicinity of a (local) maximum. Here again Glover’s concepts
of diversification and intensification which were alluded to in Section 5 are
relevant. The persistence of a diversified population can be achieved by a
careful tuning of the (many) parameters of the algorithm, namely:

® Population size,

e Replacement rate, i. e. number of children substituting old solutions

at each generation,

e Crossover probability () and mutation probability (i),

e Number of iterations.

43

But more structural choices have to be made as well, e. g.:

e A good coding for the solutions,

e Adequate crossover and mutation operators.

These are probably essential decisions as it is generally believed amongethe
GA community that the success of GA is due to the progressive proliferation

of good schemata in the population, i. e. specific substrings which would be

associated with properties which characterize optimal or near-optimal solu-
tions. This clearly implies that the coding of the solutions should be in some
sense meaningful, i. e. should implicitly give a semantic description of what
is a good solution. For instance, in the above simple example, solutions with

a” 1” in the first position are better than any solution with a 0” in the first
position. The reader interested in this theoretical debate is referred to the
next section for some more precise elements and more generally to the books
by Holland (1975) and Goldberg (1989).

6.3. Bibliographic and historic note

The origins of GA lay in the foundation of a theory of adaptive systems es-

sentially initiated by J. H. Holland. His book of 1975 ” Adaptation in natural

and artificial systems” (Holland 1975) is the Bible of the GA community.
An introductory account of the theory as well as its main developments and

applications can be found in the excellent introduction to GA by Goldberg

(1989). In fact, function optimization is the most trivial application of the

theory which ambition is to be relevant in fields like data structure design,

algorithm design, computer operating system adaptive control, ..., all fields
belonging to computer science. Since De Jong’s thesis in 1975 however, a
large part of the activity of the GA community has been devoted to the less
ambitious but more accessible subject of function optimization (see Goldberg
1989, pp. 126-127 for a list of applications of GA to optimization problems,

see also the proceedings of specialized conferences on GA: Grefenstette 1985,

1987, Schaffer 1989, Belew and Booker 1991, Schwefel 1991, Manner and

Manderick 1992). De Jong is known for being the first who seriously inves-
tigated in an experimental manner the potentialities of GA and he started

with the simplest possible situation, i. e. function optimization (De Jong

1975, see also Goldberg 1989, pp. 106 et sq. for an account).

The original motivations and backgrounds of the pioneers of GA probably

induced a development at the frontiers of computer science. By now, research
in GA can be considered to belong to the field of artificial intelligence (AI).
The GA community appears as a sociological microcosm even though about
half of the applications belong to the field of OR. It is remarkable that

even when dealing with classical problems of OR, the GA researchers seldom
compare their results in a systematic manner with those obtained by OR
researchers. This is probably a behaviour which will tend to attenuate in the
future (see e. g: the paper by Yamada and Nakano 1992 where the authors
apply GA techniques to Job Shop Scheduling test problems).

6.4 <A genetic algorithm for the travelling salesman

problem (TSP)

Several attempts at solving” the famous travelling salesman problem (TSP)
have been made using different implementations of GA’s. We present here
the most elementary of these algorithms in order to illustrate further the
possible application of GA’s. In the TSP, a traveller has to visit C cities

exactly once and go back to his starting point. The problem (which is NP-

hard) is to find a tour of the cities at lowest cost (a shortest tour in the case
of a euclidean TSP). In this GA for solving the TSP, a solution, i. e. a tour,
is represented by an ordered list of the cities. For instance, if there are C = 9
cities,

3571248 69

Tepresents the tour that passes successively in the cities 3,5, 7,..., 9 and then
comes back from 9 to 3. A first difficulty is to define a crossover-operator
as the usual 2-point crossover (see Section 6.1) is not applicable. Indeed,

consider that we have to produce children from the parents

A=3 57124 8 6 9

B=1923 468 7 5

45

Suppose that we select the third and sixth positions for 2-point crossover.

That would yield the following tours” as children

8 6 9
8 7 5

3.512 3 4 6

19/7 12 4

but those tours are meaningless as some cities appear twice while some other

cities are not visited at all. One of the crossover operators specially designed

for dealing with ”chromosomes” that represent a permutation (as is the case

here) is named OX (for order crossover) and works as follows. As for 2-point
crossover, two positions are selected, let say the 3rd and the 6th as on the

example above, both parents A and B are then prepared in order to make it
possible to transfer the ”genes” 3 to 6 of A in the corresponding section of
B and vice versa. To prepare B, for instance, holes (H) are created at the
places where are the genes that will come from A, i. e.

B: H 9|H 3 H 6|8 H 5

Then, the holes are filled in by moving non-holes that are on their right in

the chromosome. This starts from the second cut position (i. e. from gene

in the 7th position on). When the last gene is attained one goes back to the

gene in the first, second, ..., position, in circular order:

B: 3 6|H H H H|8 5 9

At the end of this process, there are only holes” in the exchange section and

the genes from the exchange section of A can be imported, yielding

B’: 3 6|7 1 2 4|8 5 9

Preparing A similarly, one gets:

A’: 7 1[2 3 4 6|8 9 5

This operator seems particularly well adapted because it introduces the least

possible perturbation in the relative positions of the cities by preserving as far

as possible the circular order of the cities. Other types of crossovers belong
to this class which is called "reordering operators”: see Goldberg 1989 (pp.
166-179).

46

The problem of creating meaningless solutions arises also with mutation.
That is why it is replaced by inversion in the application to the TSP. Starting

from a chromosome A, two sites are selected at random, say the 3rd and 6th

positions, and the order of the cities between the two selected positions is

reversed:

A": 3.5/4 2 1 7/8 6 9

Applying these special operators as they are described above does not
seem to allow to treat successfully problems of a reasonable size. There is a
need for crossover operators that do not blindly mix pairs of tours but use
problem specific knowledge and local optimization in the crossover operation.

This is the case in the algorithm proposed by Grefenstette et al. (1985) whose
results can compete with those obtained by SA on 200-city problems. Other

approaches also combining local search with genetic search are reported to
yield near optimal results on the Padberg 532-city problem (see the references
in Mathias and Whitley 1992). This tends to show that obtaining good

results with GA on combinatorial optimization problems often requires a

rather sophisticated interpretation of the basic scheme.

7 More on GA

7.1 Overview of the theory

A major piece of theory about GA remains the book by Holland (1975).
However, GA in general and in that book in particular are not primarily de-
signed for function optimization but as models of efficient adaptive behaviour.
Hence, it is no wonder that the results are not concerned with convergence
to a global optimum as for SA but with optimal or near-optimal sequences
of decisions in the context of an unknown and uncertain environment. This

distinction and its consequences are emphasized in a very convincing manner

in De Jong (1992).

Holland’s theory essentially deals with the notion of schema. A schema is

a family of strings (i. e. coded solutions) that share the same values at certain
positions while they take any value everywhere else. For instance, in a space

47

X where the solutions are encoded into 9-character bitstrings, #10 * 1 +0 * *
denotes the set of strings whose 2nd, 3rd, 5th and 7th coordinates are equal
to 1, 0, 1 and 0 respectively. The ”wild card” character ”*” indicates that
any value is allowed, either 0 or 1, at its position in the string. In a space X of

K-character bitstrings there are 2" strings (chromosomes) and 3“ schemata.
Each string belongs to 2* different schemata and in a population of N strings,
N2¥ (non necessarily different) schemata are represented.

To a schema H are associated three quantities:

e The schema order O(H) which is the number of fixed values in A (i.e.
the number of ”non-wild card” characters).

¢ The schema defining length 6(H) which is the distance between the first

and last fixed positions in H.

e The schema value F'(H) which is the average fitness on the set of solu-
tions belonging to schema H.

The so-called fundamental theorem of GA is concerned with the evolution
with time ¢ of the number m(H,t) of solutions belonging to a given schema
H. This result is based on 1-point crossover, i. e. a crossover operator which

exchanges the substrings situated after the single cutting point. The theorem
establishes that the following inequality approximately holds:

Pu 1 A
-1

where F is the average fitness of the population, x is the probability of
crossover, and yp is.the probability of mutation (2M = N in the parameter
values introduced in Section 6.1).

m(H,t +1) > m(H,t) == ~ pO(H)| (1)

This result is usually interpreted as follows. The schemata with above

average fitness, small order and short defining-length will proliferate. For
such schemata, the factor multiplying m(H,t) in (1) bas the best chances to
be larger than 1. Formula (1) is rather intuitive: schemata with large defining
length are more easily disrupted by 1-point crossover while schemata of high

order are destroyed by mutation.

Note that as long as the factor multiplying m(H,¢) in (1) remains larger
than 1, the proliferation of H is exponential. Is it a desirable feature? Well, it

48

is certainly not bad that schemata with above average fitness will proliferate

in the next generation but this does not guarantee that globally optimal

solutions will ever be reached. In order to understand the theory about GA

one must remember that their original aim is not optimization but that GA
are models of!adaptive systems. A GA produces sequential decisions in a

decision process where uncertainty is present in the form of lack of a priori
knowledge, noisy feedback and even time-varying payoff function (indeed

in natural evolution there is no global objective function to optimize, but

locally, one can define what is good and what is bad). The objective of the
whole decision:process is to maximize the overall expected gain (or minimize
expected loss): Hence, the striking difference with function optimization is
that what is important here is the evolution process of the population (the
trajectories of.the set of initial individuals) and not the presence or absence
*at the end” of optimal or near-optimal individuals.

Replacing:GA in the framework of sequential decision theory and looking
there at sequential games with uncertainty as the k-armed bandit (the well-
known slot machine but with k-arms each of them characterized by a different
unknown probability distribution of payoffs), one can define an optimal strat-

egy that minimizes the expected losses in a given number of trials. In order
to allocate trials optimally, one has to give slightly more than exponentially
increasing number of trials to the best observed arm. Transposing this to GA

(which was done by Holland) shows that those are near-optimal strategies as
they allocate exponentially growing representation in the population to the

good schemata.

In the above, we viewed GA as processing schemata. How efficient are
they in doing that job? Computations due to Holland evaluate to approxi-

mately N° the number of schemata usefully processed (i. e. the number of

above average, low order, short defining length schemata that are not de-
stroyed) in a. population of N strings at each step. This result is known

under the name of "implicit parallelism” as N® objects are processed for the

price of N.

The above considerations have some consequences for the use of GA as

function optimizers. First, the coding of the solutions should be as much
as possible meaningful, i. e. schemata should actually be associated with

features of the solutions which make them good according to the objective

49

function. In addition, these good schemata should have characteristics that
allow for efficient reproduction, i. e. small order and short defining length.
This is for instance the case with the simple example of Section 6.2: the
schema | * * * * is a high quality one (it is the best of order 1 and the best
of defining length 0). Finally, a good or optimal string should be character-
ized by its belonging to a large number of good schemata ("building block
hypothesis”).

A second consequence is that using GA as function optimizers implies
some adaptation of the original scheme. An elementary modification (also
of application with SA) is to keep track of the best solution met. One can
also force the best solution met to remain in the population. Another prob-

lem with original GA used as function optimizers is that they do in general
succeed in locating potentially optimal regions (probably by means of good

schemata) but are less efficient for the final step of optimization which con-
sists of locating more precisely the optimal solution. Roughly speaking, if
the fitness varies in [0,100], population is likely to stabilize quickly in the
range [99,100] but GA don’t make much difference between solutions that
differ by one unit only. A solution to this problem consists of adapting the

selection mechanism by dynamically rescaling the fitness function or alter-

natively using the ranking of the solutions in a population according to their
fitness rather than fitness itself.

A third possible adaptation of original GA to optimization problems is to
incorporate specific knowledge on the problem: see for instance Grefenstette
(1985) for the TSP.

In conclusion, the same statement about theoretical results is valid for GA

as for SA. They are a source of inspiration for some tactical choices that have

to be made but do not describe the behaviour of the actually implemented

optimization algorithms nor do they help understanding what really makes

them work (or fail). Note finally that some work is currently being done for

establishing convergence results for GA in much the same spirit as for SA, 1.

e. using Markov chain theory (see e. g. Davis and Principe 1991).

50

7.2 Beyond simple GA

There are several more advanced techniques in the domain of genetic search.
Let us mention for instance the "niche and speciation” techniques which
aim at maintaining some part of the population (a species) in certain regions

("niche”). This is done in order to get a better idea of the general topography
of the search space and to locate the different regions with "high peaks”. In

certain circumstances, high quality local maxima can be preferred to global

maxima because of additional characteristics they could have due e. g. to

their location in search space. The technique consists in only allowing for the
replacement of a solution (parent) by another (child) when the new solution
is similar (i. e. close in the search space) to the replaced one (for detail see
Goldberg 1989 and references therein).

Another interesting development is the parallelization of GA. We will not
enter into more detail on this subject: the interested reader is referred to
Goldberg (1989) for an overview and to Miihlenbein (1989) for a seemingly
promising approach.

Until the end of this section, we give a short introduction to the advanced
topic of genetic-based machine learning and to the most common systems

in the field, the classifier systems. Those are essentially algorithms which

maintain and let evolve a population of rules called classifiers. Hence, it
can be considered an expert system with learning capabilities. Among the
few applications of such systems to optimization, let us mention scheduling
(Hilliard et al. 1987, Bouffouix 1990). To be more concrete, we present the
general structure of a classifier system in the context of scheduling. We follow

Bouffouix’ work.

The classifier system works in interaction with an environment which is

in this example a scheduling problem of a certain type and an elementary
scheduler. By this, we mean an algorithm able to produce a schedule provided
a certain number of conflicts have been solved by an external instance. In

Bouffouix’ work, the scheduling problem is of the Job shop type. A list

of tasks composed of different operations are to be executed on different
machines. Each operation must be done on a specific unique machine and
the processing order of the operations within a task is fixed. What remains
to be decided is the order and time of processing of each operation on its

assigned machine.

51

Suppose our elementary scheduler tries to schedule the operations on
each machine at their earliest possible processing date (which takes into

account the precedence constraints between operations within a task and

possibly ready dates associated to the tasks). Then, we will be confronted

with conflicts between operations that compete for the same resource. At

each elementary conflict, i. e. a conflict involving two operations, a message

describing the conflict is sent to the classifier system which sends back a
decision giving priority to one of the two competing operations. At the end

of the process, when a whole schedule has been completed, the environment

sends an evaluation of the schedule (e. g. the makespan) to the classifier
system. The interactions of the system with its environment are summarized
in Figure 4.

Conflict description
LN

re

Decision Classifier

Environment
Final Evaluation System

ee

Figure 4: Interactions between a classifier system and its environment.

The internal structure of the classifier system is illustrated in Figure 5.
The rule base (i. e. the set of classifiers) is the central part of the classifier
system. The rules usually are of the type:

If <condition > then < action >

To each rule is assigned an evaluation, called fitness of the rule, which evolves
with time. When a message describing a conflict comes to the system, the
*matcher” looks in the set of rules for the rules whose condition matches the

conflict description. The “selector” chooses one of the matched rules accord-

ing to a probability which is a non decreasing function of the rule fitness.
The ”action” of the selected rule is the decision which is communicated to

52

Conflict Description

> Matcher
G A

L
¥ EG

Decision Rule N 0

—- Selector R < Base Td

iT
¥ CH

. . M
Final Evaluation Fitness

* Manager

Figure 5: Internal structure of the classifier system.

the environment: in our scheduling problem, it consists in choosing one of

the two operations in conflict to be scheduled first. The rule fitness evolves

according to a:complex mechanism of taxes and rewards. The fitness of all

rules whose condition matches a message is decreased by a “tax”. The rule
which is finally. selected pays a tax for being selected. When a schedule has
been completed, the fitnesses of all rules which have been selected for solving

conflicts for this schedule are increased or decreased according to the overall
evaluation sent by the environment and all rules in the rule base pay a tax
"for existing”. At fixed periods, i. e. after a fixed number of completed
schedules, a genetic algorithm is used to produce a new generation of rules
from the current population. This genetic algorithm works as described in

Section 6 as the rules are usually coded by means of bitstrings. The rule

fitness is used in the selection process.

This type of complex system is clearly intellectually appealing but the

difficulties for making it work properly are in proportion of the ambition.
This is due mainly to the large number of parameters to be tuned and the
collective character of the rule evaluation (reward or penalty after a complete

schedule). Another weakness is the difficulty of dealing with rules that are
other.than elementary, i. e. with complex conditions taking into account
a non-trivial description of a conflict context. Finally, the rules produced

through the genetic algorithm action on the rule base are difficult to inter-

pret: one is generally unable to give them a sensible meaning in the context

of the problem at hand. This leaves the door open for the suspicion that
the emerging rules are closely dependent on the problem instance and will

53

change when another instance will be submitted. The above problems will
probably not be solved easily except perhaps for very specific problems (see

e. g. Goldberg 1989 for a list of applications in various fields). An interesting
result. of the scheduling classifier system described above is that it is able to
“learn” a definite rule: if the system is rewarded when it behaves for instance
like the SPT rule (Short Processing Time first), one usually finds this rule in
the rule base at the end even if it was not there at the start.

8 Neural Networks (NN) for combinatorial

optimization

8.1 Discrete Hopfield nets

General neural networks (NN) used in combinatorial optimization are known
as Hopfield nets. We first describe their discrete state version, the continuous
one being presented in Section 8.3. Consider a graph (or network) whose V
vertices are called neurons and are associated a state value which is either
—1 or +1 (0 or 1 can also be considered). The state of the whole network
which evolves in discrete time ¢ = 1,2,..., is characterized by a state vector
E(t) = (x1(t),...,2n(t)). Each connection between two neurons (= edge
of the graph) is weighted: let (T;;;1,7 = 1,...,N) denote the connection
weights matriz.

The dynamics of evolution of the neural network is given by the following

equation

N

r(t+1) = sgn[}? Ty2;(t) — L (2)
j=l

where (J;,¢ = 1,...,N) is a threshold vector associated with the neurons

and sgn{...] is equal to +] or —1 according to the sign of the expression

between brackets. The expression (2) receives the following interpretation in

the language of NN: a neuron 7 is in its upper level (+1) if the sum of all
“inputs” in 2, 0; Tj;2;, passes a certain threshold Jj.

There are several modes for updating the state vector Z(t) when time
elapses: the synchronous mode where all state variables are updated at the

54

same time ¢ on the basis of the values F(t — 1), and the asynchronous mode
where state variables are updated one after the other and the updated values
are used as soon as they are available. The asynchronous case has several

variants according to the order in which the neurons are considered for being
updated: in the order of their labels (: = 1,2,...,.N), according to a random
permutation, ..., and so on.

The energy E of such a system has been defined by the quadratic form

1M N
E(z) = ZL Le Tyrie; + ° Lz; (3)

i=1j=1 7=1

This quantity is related to the updating equation (2): the energy is non
imcreasing along any trajectory F(¢) if the matrix T has some properties
(T is symmetric and its diagonal elements are all 0). The evolution (2) of
the system naturally drives it to stable states (i. e. state vectors such that

z(t + 1) = E(t)) which are local minima of E. This feature can be exploited

for optimization purposes.

8.2. Examples

How can we map a combinatorial optimization problem onto a NN as de-
scribed above? There is no universal method for doing this. We present two

examples of problem formulations below.

8.2.1 The graph bipartitioning problem

We consider once again the example illustrating SA in Section 2.3. In the
NN formulation of this problem, each node is assigned a neuron z whose state

xz; is +1 or —1 according to its belonging to VY or V2 (respectively). (Vi, V2)
is a bipartition of the nodes. The connection weight -y;; of two neurons 7

and j is equal to 0 if there is no edge between 7 and j in the graph and to

a fixed positive constant if (z,7) belongs to the edge set. Hence, yj;2;2; will
be 0 if 7 and 7 are not linked by an edge. If (2,7) is an edge, then y,;2;2;

will be positive or negative according to whether i and 7 belong to the same
class of the partition or not. Minimizing >; 0; y2:z; would lead to put

all vertices in one of the two subsets V; or Vy. In order to get a balanced

partition |Vj| = |Va|, one introduces the term 4(); z;)? as a penalty in the
energy function which finally reads

1 1
3 D De Hs i2j + y4AQL 3)"

t oj i

]
—3 ita - Adee

Boj

The complete connection weighi is thus

E(x)

Ti = is —A

The threshold vector is null in this case.

8.2.2 The Travelling Salesman Problem (TSP)

We consider a symmetric N-city TSP which means that the cost matrix

C = (cap; a, 8 € set of N cities) is symmetric. The NN formulation is based

on the representation of a tour by a permutation matrix 2 = (za:3a € set of

cities, 2 = 1,...,N) where z,; = 1 if city @ is the ith city which is visited

in the tour (w. r. t. an arbitrary starting point) and 0 otherwise. We have
Ye lai = Fai = 1. Note that the representation is badly redundant each

tour being represented by 2N different matrices (as there are no privileged

origin nor orientation).

One neuron is associated to each variable of the matrix. The state of the

N? neurons is described by the matrix x = (z,;) whose elements are either

0 or 1. The energy function E(x) is the sum of two types of terms: the cost

of the tour z and several penalty terms that tend to force the respect of the
constraints

E(z) =aF, +6F,+¢eF3+ db

where a, b, c, d are weighting factors (to be adjusted) and

A(t) = YY taites
a4 aft

F(z) = DODD tate:
+ @ Bfta

56

F3(x) (LD tai — NY)
sD > Ye captai(ta,ie1 + 2pi-1)

a pea i
L(z)

where Cog = Cga.is the cost for going from city a to city f.

The first three terms F\, F,, and F3, modelize the constraints on the
matrix z that will make it a permutation matrix. F, is minimal (fF, = 0)

iff there is at most one ”1” on each row and Fy plays a similar role for the

columns. F3 is: minimal (Ff; = 0) iff there are exactly N ”1”s in matrix

z. The last term ZL expresses the length of a tour (it uses the symmetric
character of the-TSP we are dealing with).

In expliciting the connection weights in this NN, we get (using 6,; = 1 if
a= 7 and 0 otherwise)

Taigi = —@6ap(1 — 6:5) — 56:;(1 — bag)
—¢ ~ dbap($ji41 + 51-1)

The terms of the threshold matrix J,; are all equal to cN. As the state vari-

ables in this model take 0-1 values, note that Equation (2) has to be trans-
formed by means of the following affine transformation that maps {—1,1}
onto {0,1}

8.3 Continuous state neural networks

The networks.that are actually used for efficient optimization are not exactly

those described before. The solution space, i. e. the set of state vectors of

the above networks, is the set of vertices of a hypercube {—1,1}% in the
N-dimensional space (where N is the number of neurons). Due to this dis-
cretization, the possibilities of escaping a local minimum are relatively scarce
and the trajectories, i. e. the sequences of hypercube vertices visited due to

the dynamics of the network, frequently remain stuck in a local minimum.

One way of getting better results is to apply SA to the discrete network:
elementary transformations are defined (e. g. flipping a "+1" in ”—1” or

57

conversely in the state vector). At each step such a transformation is chosen
at random and accepted according to the SA rule, AF being here the differ-

ence in the energy function due to the transformation. For applications of

this technique, see e. g. Hérault (1991).

Alternatively, another possibility for improving the situation is to allow
the state variables to vary continuously in the [—1,+1] (or [0,1]) interval.
This makes our neurons become analog neurons rather than discrete ones.

The modelization of a problem remains unchanged but the state variables
tmhust now be considered as continuous ones. What is changed is the dynamics

that governs the evolution of the network. In analog neurons, one usually

distinguishes the potential u; of the neuron and its output 2; (which is also
its state). Time varies continuously and the potential evolves according to
the following differential equation

du; N

= et LT — (4)
j=l

Note that at equilibrium, i. e. when ti = 0, Equation (4) reduces to Equa-
tion (2) if z; is set equal to +1 or —1 according to the sign of u;. In general,
the relationship between u; and z; is the famous sigmoid curve which is clas-
sically used to model the relation between stimulus and response in real brain

neurons. We have

z,(t) = tanb(“) (5)
where T determines the shape of this function at the origin. When T tends
to 0, 2; tends to be sgn(u;). There are different ways of simulating the
above dynamics in discrete time (see e. g. Takeda and Goodman 1986). The
simplest transition mechanism postulates equilibrium (i. e. 4 = 0). Hence
(4) yields:

u(t) = DIT y2,(t) — hi
i

Then, the discrete time version of (5) allows to drop the potential u;:

wilt)

© (52 Ty2,(t) — hy) (6)

z(t+1) = tanh(

JF tanb|[

sl

3

58

Alternatively, (6) can be obtained by importing an approximation technique

used in statistical physics, namely the "Mean Field Theory”. In this theory,

the state x; of neuron ? is approximated by < x; >7, the mean state value
of the neuron when the network has reached its equilibrium for a fixed value

of T. Statistical mechanics tells us that at equilibrium, the probability of
neuron 2 to be in the state x; = £1 is

1

= Tree)

Hence < 2; >r= P(z; = +1).1+ P(x; = -1).(—1) = tanh(). This proves
that the mean field approximation leads to the dynamics described by Equa-

tion (6) which can be used either in synchronous or asynchronous mode.

The mean field approach mainly applied to combinatorial optimization
by Peterson, seems to be the most promising one. Results of experimentation

on the graph bipartitioning problem are reported by Peterson and Anderson

(1988). The authors considered graphs with number of vertices ranging from
20 to 2000 and obtain results that are slightly worse than with ordinary SA

but in much shorter time. The method is not very sensitive to the choice of

A and T. The imbalance in the final partition is generally small and removed
by means of a greedy heuristic (see also Peterson and Séderberg 1989 for a

more efficient implementation). This good opinion is confirmed by Hérault
(1991) who also experiments with "mean field annealing”, a method which
consists in slowly lowering T in Equation (6) during the evolution. This last
method gives quicker results of a slightly worse quality.

The TSP was also investigated by Peterson through its mean field ap-
proach. The results were found comparable to (slightly worse than) those
obtained by SA on problem sizes up to 200 cities (see Peterson and Séderberg

1989).

8.4 Bibliographic and historic note

The main application of NN is not optimization. NN were originally designed

for simulating the brain behaviour. A pioneering work on the potentialities
of formal NN is due to McCulloch and Pitts (1943) who show that any
logic function can be realized by a NN. The main technical interest of NN

59

is their ability to process information (input signal) with a high degree of
parallelization, the computations being distributed throughout the structure.

In recent years, NN have been increasingly used for dealing with classification

problems (in the wide sense: pattern recognition, vision, voice recognition,

...) where their learning capabilities as well as their computing power (due
to parallelism) are determinant features. A general and recent reference on
NN is Khanna 1989.

Optimization has been up to now a marginal topic in NN theory: see
Masson and Wang (1990) and Chee-Kit Looi (1992) for recent reviews on
this subfield. The first cited is specially illuminating. The conception of NN

designed for optimization is due to Hopfield (Hopfield and Tank 1985). These
are particular cases of recursive networks: the state of the network at time f+

1 is determined by its state at time ¢. For competitive optimization by means
of NN, it seems necessary to modify the original dynamics of Hopfield nets

as outlined in Section 8.3. A major trend consists in considering stochastic
evolutions (among which are the so-called ”Boltzmann machines”, see Aarts
and Korst 1989 and Masson and Wang 1990). SA applied to the discrete
Hopfield net as well as the mean field theory (with or without SA) are relevant
to this trend (see Peterson and Anderson 1987, 1988, Peterson and Séderberg
1989, Hérault 1991). Stochastic evolution makes NN relevant to statistical
mechanics theories: Hopfield nets with stochastic evolution are known in
physics as spin glasses (Ising or Potts spin glasses according to the discrete
or continuous character of the state space). Theoretical results about the
evolution of such systems can be found e. g. in Mézard et al. 1987.

Let us finally mention a particular NN approach for the euclidean TSP:

it is known under the name of elastic net algorithm” (Durbin and Willshaw
1987, Fort 1988, Hueter 1988, Angéniol et al. 1988) and is implemented on
another type of NN, the Kohonen NN. Though it seems relatively competitive

for the TSP, we did not present it in this section as the present paper is
devoted to general heuristics.

9 Conclusion

In the conclusions of this long tutorial, I will distinguish the viewpoints of

the practitioner and the theoretician. From a practical viewpoint, the only

60

concern is the effectiveness of the method used for solving a problem. Ac-
cording to the effectiveness criterion, no universal hierarchy can be made

neither between the four heuristics we considered nor between these and
other methods. In front of a specific problem, it is not easy for the practi-
tioner to choose an algorithm mainly because of lack of complete, pertinent

and objective information on the available solutions. In the case of difficult

problems (let say NP-hard optimization problems) one could consider the
use of one of the above heuristics from the start or for improving an existing
specific heuristic (specially if this is of descent type). It is however always ad-
visable to inform oneself on whether good specific heuristics do exist for the
particular problem at hand (as the Kernighan-Lin algorithm for the graph
bipartitioning problem: see Johnson 1989). If the decision of implementing
a general heuristic is made, I would advocate to begin with a simple one like
SA or TS and then turn if necessary to the more complicated GA or NN or
to other methods. This is because the time needed to implement SA or TS

seems attractively short. For choosing further between SA and TS, let me

summarize my opinion on how they compare in the following statements: SA

and TS often yield solutions of similar quality; TS is in general much faster
than SA; TS involves more tactical choices and hence needs more time to be

implemented and adequately tuned. The choice will depend on the relative

importance of computing time and implementation effort. So far for the first
phase of the implementation of a heuristic. In a second phase, one can try to

tefine the first implementation if the balance between the expected benefits

and the additional research is favourable to more effort. In this case, many

possibilities are open. If one remains in the domain-of general heuristics, a

good and not too expensive idea is to combine good heuristic principles like
in Liégeois et al. (1992).

Finally, we turn to the theoretical viewpoint. There, the challenge is

to explain why the heuristics do work or more precisely for what kind of

problems (for which geometry of the search space) our general” heuristics
are efficient. If this can be understood, the way will be open to the design of
new general heuristics adapted to families of problems for which the present

heuristics are not effective.

61

10 References

Aarts, E. H. L., and J. Korst (1989). Simulated Annealing and Boltzmann

Machines. Wiley, New York.

Aarts, E. H. L., and P. J. M. van Laarhoven (1985). Statistical cool-
ing: a general approach to combinatorial optimization problems Philips J. of

Research, 40, pp. 193-226.

Angéniol, B., G. de La Croix Vaubois and J. Le Texier (1988). Self-
organizing feature maps and the travelling salesman problem. Neural Net-

works, 1, pp. 289-293.

Azencott, R. (Ed.) (1992). Simulated Annealing. Parallelization Tech-
niques. John Wiley, New York.

Belew, R. K., and L. B. Booker (Eds.) (1991). Proceedings of the Fourth
International Conference on Genetic Algorithms. Morgan Kaufmann Publ.,

San Mateo, U.S.A.

Bouffouix, 5. (1990). Contribution é l’ordonnancement de production:
apport des algorithmes génétiques et des systémes & apprentissage. Travail de

fin d’études, Faculté des Sciences Appliquées, Université Libre de Bruxelles,
Belgium.

Cerny, V. (1985). A thermodynamical approach to the travelling salesman
problem: an efficient simulated algorithm. J. Optim. Theory Appl. 45, pp.

41-51.

Chams, M., A. Hertz, and D. de Werra (1987). Some experiments with

simulated annealing for coloring graphs. Eur. J. Op. Res., 32, pp. 260-266.

Chee-Kit Looi (1992). Neural network methods in combinatorial opti-
mization. Computers Ops. Res., 19, 3/4, pp. 191-208.

Collins, N. E., R. W. Eglese and B. L. Golden (1988). Simulated anneal-
ing: an annotated bibliography. Report No. 88-019, College of Business and
Management, University of Maryland, College Park, Md.

Davis, T. E., and J. C. Principe (1991). A simulated annealing like

convergence theory for the simple genetic algorithm. In Belew and Booker
1991, pp. 174-181.

62

De Jong, K. A. (1975). An Analysis of the Behaviour of a Class of Genetic

Adaptive Systems. Doctoral Thesis, University of Michigan, Ann Arbor,

U.S.A.

De Jong, K. A. (1992). Are genetic algorithms function optimizers? In
Manner and Manderick 1992, pp. 3-14.

de Werra, D. (1988). Communication at a Conference on Tabu Search.
Vrije Universiteit Brussel, Brussels, December 1988, Unpublished.

Durbin, R., and D. Willshaw (1987). An analogue approach to the travel-
ling salesman problem using an elastic net method. Nature, 326, pp. 689-691.

Fort, J. C. (1988). Solving a combinatorial problem via self-organizing
process: An application of the Kohonen algorithm to the travelling salesman
problem. Biological Cybernetics, pp. 33-40.

Geman, S., and D. Geman (1984). Stochastic relaxation, Gibbs distribu-

tion, and the Bayesian restoration of images. [EEE Proc. Pattern Analysis
and Machine Intelligence. PAMI-6, pp. 721-741.

Gidas, B. (1985). Non-stationary Markov chains and convergence of the
annealing algorithm. J. Statis. Phys. 39, pp. 73-131.

Glover, F. (1986). Future paths for integer programming and links to
artificial intelligence. Computers and Operations Research, 5, pp. 533-549.

Glover, F., M. Laguna, D. de Werra, and E. Taillard (1992). Tabu Search.

Annals of Operations Research, Vol. 41, J. C. Baltzer Publ., Basel, Switzer-

land.

Glover, F., and H. J. Greenberg (1989). New approaches for heuristic
search: a bilateral linkage with artificial intelligence. Eur. J, Op. Res., 39,

pp. 119-130.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, Mass.

Goldberg, D. E., and R. Lingle (1985). Alleles, loci and the travelling
salesman problem. In Grefenstette 1985, pp. 154-159.

Green, J. M., and K. J. Supowit (1986). Simulated annealing without
rejected moves. [EEE Trans. Computer-Aided Design. CAD-5, pp. 221-228.

Grefenstette, J. J. (Ed.) (1985). Proceedings of an International Confer-

63

ence on Genetic Algorithms and their Applications. Hillsdale, NJ, Lawrence

Erlbaum Associates, U.S.A.

Grefenstette, J. J. (Ed.) (1987). Genetic Algorithms and their Applica-
tions: Proceedings of the Second International Conference on Genetic Algo-
rithms. Hillsdale, NJ, Lawrence Erlbaum Associates, U.S.A.

Grefenstette, J. J., R. Gopal, B. J. Rosmalta, and D. Van Gucht (1985).

Genetic algorithms for the travelling salesman problem. In Grefenstette 1985,
pp. 160-168.

Hajek, B. (1988). Cooling schedules for optimal annealing. Math. Oper.
Res., 13, pp. 311-329.

Hansen, P. (1986). The steepest ascent mildest descent heuristic for com-
binatoria] programming. Presented at the Congress on Numerical Methods
in Combinatorial Optimization, Capri, Italy.

Hérault, L. (1991). Réseauz de neurones récursifs pour l’optimisation
combinatoire. Thése de Doctorat, Institut National Polytechnique de Greno-

ble, France.

Hertz, A., and D. de Werra (1987). Using tabu search techniques for
graph coloring. Computing, 29, pp. 345-351.

Hilliard, M. R., G. E. Liepins, M. Palmer, M. Morrow, and J. Richardson
(1987). A classifier based system for discovering scheduling heuristics. In
Grefenstette 1987, pp. 231-235.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, U.S.A.

Hopfield, J. J., and D. W. Tank (1985). ”Neural” computation of deci-
sions in optimization problems. Biol. Cybernetics. 52, pp. 141-152.

Huang, M. D., F. Romeo and A. Sangiovanni-Vincentelli (1986). An
efficient general cooling schedule for simulated annealing. Proc. [EEE Int.
Conf. on CAD (ICCAD 86), pp. 381-384, Santa Clara, Calif.

Hueter, G. J. (1988). Solution of the travelling salesman problem with
an adaptive ring. [EEE International Conference on Neural Networks, San

Diego, CA, July 24-27.

Johnson, D. S., C. R. Aragon, L. A. McGeoch and C. Schevon (1989).

64

Optimization by simulated annealing: an experimental evaluation - Part |
(Graph partitioning). Opns. Res., 37, 6, pp. 865-892.

Johnson, D: S., C. R. Aragon, L. A. McGeoch and C. Schevon (1991).
Optimization by. simulated annealing: an experimental evaluation - Part I]

(Graph coloring:and number partitioning). Opns. Res., 39, 3, pp. 378-406.

Johnson, D: S., C. R. Aragon, L. A. McGeoch and C. Schevon (1992).

Optimization by simulated annealing: an experimental evaluation - Part III

(The travelling:salesman problem). To appear in Opns. Res.

Khanna, T..(1989). Foundations of Neural Networks. Addison-Wesley,

Reading, Mass..

Kirkpatrick, S., C. D. Gelatt, Jr. and M. P. Vecchi (1983). Optimization
by simulated annealing. Science, 220, pp. 671-680.

Lam, J., and J. M. Delosme (1986). Logic minimization using simulated
annealing. Proc. IEEE Int. Conf. on CAD (ICCAD 86), pp. 348-351, Santa
Clara, Calif.

Liégeois, B., M. Pirlot, J. Teghem, E. Trauwaert, and D. Tuyttens (1992).

Homogeneous grouping of nuclear fuel cans through simulated annealing and
tabu search. Submitted.

Lundy, M. and A. Mees (1986). Convergence of an annealing algorithm,
Math. Prog., 34, pp. 111-124.

Manner, R., and B. Manderick (1992). Parallel Problem Solving from

Nature, 2. North-Holland, Amsterdam, The Netherlands.

Masson, E., and Y.-J. Wang (1990). Introduction to computation and

learning in artificial neural networks. Eur. J. Op. Res., 47, pp. 1-28.

Mathias, K., and D. Whitley (1992). Genetic operators, the fitness land-

scape and the travelling salesman problem. In Manner and Manderick 1992,
pp. 219-228.

McCulloch, W. S., and W. A. Pitts (1943). A logical calculus of the ideas

immanent in nervous activity. Bull. Math. Biophys., 5, pp. 115-133.

Mézard, M., G. Parisi, and M. A. Virasoro (1987). Spin glass theory and

beyond. Lecture Notes in Physics 9, World Scientific, NJ, U.S.A.

Mihlenbein, H. (1989). Parallel genetic algorithms, population genetics

65

and combinatorial optimization. In Schaffer 1989, pp. 416-421.

Mitra, D., F. Romeo and A. L. Sangiovanni-Vincentelli (1986). Conver-
gence and finite-time behavior of Simulated Annealing. Adv. Appl. Prob.,
18, pp. 747-771.

Otten R. H. J. M. and L. P. P. P. van Ginneken (1984). Floorplan design
using Simulated Annealing. Proc. [EEE Int. Conference on Computer-Aided
Design, Santa Clara, November 1984, pp. 96-98.

Pedersen, J. M. (1990). Simulated Annealing and Finite-Time Thermo-
dynamics. Ph. D. Thesis, University of Copenhagen, Denmark.

Peterson, C., and J. R. Anderson (1987). A mean field theory learning
algorithm for neural networks. Compler Systems, 1, pp. 995 sq.

Peterson, C., and J. R. Anderson (1988). Neural networks and NP-
complete optimization problems: a performance study on the graph-bisection

problem. Complez Systems, 2, pp. 59 sq.

Peterson, C., and B. Séderberg (1989). A new method for mapping opti-
mization problems onto neural networks. Int. J. Neural Syst., 1, pp. 3-22.

Schaffer, F. D. (Ed.) (1989). Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann Publ. San Mateo,
U.S.A.

Schwefel, H. P. (Ed.) (1991). Parallel Problem Solving from Nature, 1,

Lecture Notes in Computer Science, 496, Springer, Berlin, Germany.

Siarry, J., and G. Dreyfus (1989). La méthode du recuit simulé. Paris,

IDSET.

Takeda, M., and J. W. Goodman (1986). Neural networks for computa-
tion: number representations and programming complexity. Applied Optics,

25, 18, pp. 3033-3046.
van Laarhoven, P. J. M., and E. H. L. Aarts (1987). Simulated annealing:

Theory and Practice, Kluwer Academic Publishers, Dordrecht, The Nether-

lands.

Vidal, R. V. V. (Ed.) (1993). Applied Simulated Annealing. Lecture
Notes in Economics and Mathematical Systems, Springer, Berlin, to appear.

Yamada, T., and R. Nakano (1992). A genetic algorithm applicable to

66

large-scale Job-shop problems. In Manner and Manderick 1992, pp. 281-290.

67

