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Abstract 

The paper presents four general heuristic search strategies that can in princi- 

ple be adapted to any combinatorial optimization problem. All these techniques, 

Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA) and 

Neural Networks (NN), can be described as local search heuristics. We provide 

an elementary description of each of them together with examples of applica- 

tions and a bibliographic and historic note. More advanced developments in the 

framework of each strategy are outlined. 
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1 Introduction 

1.1 Four general heuristics in combinatorial optimiza- 
tion 

In recent years, much attention and many papers have been devoted to four 

general heuristics that are applicable in particular for ”solving” combinatorial 
optimization problems. These general heuristics also called metaheuristics, 

are Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithms (GA) 
and Neural Networks (NN). We shall first situate the above methods in the 
general panoply of tools that can be used to find satisfactory solutions to 

combinatorial optimization problems. Doing this, we shall adopt the practi- 
tioner’s viewpoint. 

There is a huge amount of combinatorial optimization problems in all sec- 

tors of management. A small.sample of them is: sequencing and scheduling 

problems in production management, routing and transportation, plant loca- 

tion, time-tabling, ..., and so on. Very often, the manager is not aware of or 

not convinced by the possible benefits of using discrete optimization meth- 

ods in industry. Quite often too, he has more important tasks or the above- 

mentioned problems appear as detail] and the possible benefits as ”peanuts”. 
However, times are changing and the international competition forces eco- 

nomic actors to get interested in such details. 

Consider now a production manager at a relatively low level who is in 
charge of saving peanuts”. Suppose he is conscious of the possible benefits 

and wanting to use some of the existing methods for solving his combinatorial 
optimization problems. Very often, this good-willing person will be discour- 
aged by one or several of the following problems (the list is not exhaustive): 
the effort in time and mathematical education for finding and understanding 
a suitable method may be judged not worth the possible return, there may be 
no method which is adapted to the complex constraints of the real situation, 
the methods may be inapplicable in practice due to inappropriate computing 

time or deceptive solution quality or lack of robustness. 

As a consequence, quite frequently one will not try to use any optimiza- 
tion method but simply implement some simple rule (of good practice, rule 

of thumb, ...) in a program that will deal with the problem. In the most



sophisticated and/or expensive solutions this program will receive the name 
of expert system. In such a context, the interesting point with the general 

heuristic strategies mentioned above is that they generally yield relatively 
good results for a not too important effort (in computation time, under- 
standing, implementation, ...). In particular, they are often flexible enough 

to be able to deal with complex particular constraints. 

These considerations seem a sufficient motivation for examining such 

methods. On the other hand, one should also refrain from excessive enthusi- 
asm. These methods are new and appealing. They rely on analogies with op- 

timization mechanisms in ” Nature”: physical systems able to evolve towards 

a state of minimal energy (simulated annealing and neural networks), incest 
prohibition (tabu search), natural selection and species evolution (GA). Some 
of these methods (SA, GA, NN) are supported by theoretical results which 
guarantee their good behaviour. Hence, it is no wonder that each method 

has eager supporters who consider that their preferred method cannot be 
beaten. This is certainly not a reasonable attitude because analogy cannot 

be considered a justification (”"comparaison n’est pas raison”), the theoret- 
ical results are not in general relevant for the actual use of the methods in 
practice (more detail on that below) and one can (easily) find problems on 
which any of our four heuristics is not competitive. In conclusion, one should 

not consider the four general heuristics as a substitute to exact methods, or 
other types of heuristics: there are cases where it is not advisable to use 

them because there are much better specific or general approaches. They are 
*not a panacea but are potentially useful tools” (paraphrasing Johnson et al. 

1991, p. 405). 

From a theoretical viewpoint also these methods are interesting: the ex- 
isting theoretical results though not relevant for practice suggest that trying 

to understand why these methods work or fail is not hopeless. 

1.2 Organization of the paper 

The four heuristic search strategies are exposed in Sections 2, 4, 6 and 8 
in a not too technical language. Examples of applications are provided for 

each method as well as a bibliographic and historic note which aims at ori- 
enting the interested reader in the literature. The reader who only wants an 
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overview of the subject can skip Sections 3, 5 and 7 where more advanced 
topics are dealt with as well as more technical issues are addressed. The 
ambition with this paper is to provide the reader with a good starting point 
for applying one or several of these methods in practice. 

1.3. Local search strategies 

All four general heuristics we are concerned with can be considered to some 

extent as local search strategies: it is quite clear for SA and TS, somewhat less 
for GA and NN. Essentially, local search consists in moving from a solution 

to another one in the neighborhood according to some definite rules. The 
sequence of solutions can be called a trajectory in the solution space. 

For definiteness, let us consider the problem of minimizing a function 
F(z) on a finite set of points X. This can be considered a general statement 
of a combinatorial optimization problem. A local search strategy starts from 

an arbitrary solution z,; € X and at each step n, a new solution z,4; is 

chosen in the neighborhood V(z,) of the current solution z,. This implies 
the definition of a neighborhood structure on X: to each x € X is associated 

asubset V(r) C X called the neighborhood of x. For instance, if X is a set of 
binary vectors and © € X, the neighborhood V(Z) of = may be the set of all 
solutions z € X that can be obtained from F by flipping a single coordinate 

from 0 to 1 or conversely. By convention, we suppose that no solution is 

a neighbour of itself, i.e. c ¢ V(x), Ve € X. Alternatively, one can say 

that the neighbours of z are the solutions that can be obtained from z by 
an elementary move. The evolution of the current solution z,,n = 1,2,... 

draws a trajectory in X. 

The most common way of choosing a new solution 7,4, in the neighbor- 

hood of z, is to pick (one of) the best one(s), i. e. a solution 2,4, € V(z,) 
with F(tazi) < F(z), Ve € V(2,). Then, tn4, becomes the next current 

solution if it is not worse than gq, i.e. F(tn41) < F(an). Otherwise, the 

search is stopped. This strategy is usually called a descent or a steepest de- 

scent strategy. For further comparison purposes we give a formal description 

below. F* will denote the best value of F up to step n and 27 is such that 

F(ct) = Fe. 
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Descent Algorithm 

© Initialization: select x; € X. 

e Step n =1,2,...: 2, denotes the current solution. 

a) Find the best 7 in the neighborhood V(z,). 

b) If F(z) < F(z,) then F becomes the new current solution z,4, at 
step n+1 and the best value F* of F (up to step 7) as well as c* 
are updated. 

c) Else: stop. 

Note that the choice of a good neighborhood structure is generally impor- 

tant for the effectiveness of the process. The main weakness of the descent 
algorithm is its unability to escape from local minima. This is symbolically 
illustrated in Figure 1: all solutions in the neighborhood V(z,) are worse 
than z, although, further away, there exists a global minimum of F which 
cannot be reached under the descent rule. 

F(x) 

V(xn) 

    
Xn * 

Figure 1: Trapped in a local minimum. 

Simulated Annealing and Tabu Search are local search strategies ex- 
plicitely designed for avoiding such a situation. This implies temporary 
degradation of the objective function. 

12



2 Simulated Annealing (SA) 

2.1 General presentation of Simulated Annealing 

When using Simulated Annealing (SA) algorithms one does not search for 
the best solution in the neighborhood V(z,) of the current solution z,: one 
simply draws at random a solution z in V(z,). If F(x) < F(2,), « becomes 
the new current solution. Otherwise, one of the two following alternatives is 

selected according to some probabilistic law: x becomes the current solution 

with probability p(n) or 2, remains the current solution with the comple- 

mentary probability 1 — p(n). Typically, p(n) decreases with time (n) and 
with the size of the deterioration of F (= F(x) — F(z,)). 

The idea of SA comes from thermodynamics and metallurgy: when a 

metal in fusion is cooled slowly enough it tends to solidify in a structure 
of minimal energy. The same principle is at work in SA: at the beginning, 
almost all moves (i. e. all updating of the current solution by a solution z 
randomly chosen in its neighborhood) are accepted. This allows to “explore” 

the solution space. Then, gradually, ”temperature” is decreased which means 

that one becomes more and more selective in accepting new solutions. At the 

end, only the moves that improve F are accepted in practice. Schematically, 

SA is the following alteration of the Descent Algorithm. 

Simulated Annealing (SA) 

e Initialization: Select an initial solution x, in X 

Pe e& F(a,) 

woe 2 

e Step n =1,2,...: 2, denotes the current solution. 

— Draw z at random in the neighborhood V(z,) of zy. 

— If F(z) < F(z,) then 2,41; - 2. 

If F(z) < F* then F™ — F(z) and z* — =. 

— Else, draw a number p at random in (0, 1]. 

13



If p < p(n) then tay, + 2. 

End: If stopping condition is fulfilled then stop. 

In order to make the algorithm operational, a few tactical decisions have 
to be made. 

a) Choice of the acceptance probability p(n). 

By analogy with thermodynamics, a Boltzman-like distribution is gen- 
erally chosen: 

1 
p(n) = ex(— aay ahr) 

where AF, = F(z) — F(z,) and T(n) is the so-called ”temperature” 
at step n. 

b) Choice of a "temperature schedule”. 

Temperature T(n) decreases with time in order to exclude or almost 
exclude "bad moves” at the end. A classical schedule for decreasing T is 

illustrated in Figure 2. Starting from Tp, the temperature is maintained 

T(n) 

1 
T; 

n 

  

Figure 2: The most common temperature schedule. 

constant for L consecutive steps. Then it is decreased by multiplying it 
by a constant factor a (0 < @ < 1) after each series of L steps. Hence, 

after kL steps, the temperature is 

T(kL) =T, = a Ty 
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This implies the setting of three parameters, To, a and L, which will be 
respectively referred to as initial temperature, cooling rate and length 

of plateau. 

c) Choice of a stopping rule. 

Here are two variants of a stopping rule that are both natural and 
commonly used: 

e Stop 1: If F* was not improved by at least €, % after K, consec- 

utive series of L steps, the procedure is halted. 

e Stop 2: If the number of accepted moves is less than 2% of L for 
K, consecutive series of L steps, the procedure is halted. 

For the sake of completeness, let us recall that the definition of the neigh- 
borhood structure is an important decision in this local search algorithm. 
The influence of a particular parameter choice will be discussed in Section 
3.2. 

2.2 Bibliographic and historic note 

The idea of applying the annealing principle to optimization problems is 

due to Kirkpatrick, Gelatt and Vecchi (1983) and Cerny (1985) who worked 
independently. They both applied SA to the Travelling Salesman Problem. 

Since then, a huge amount of literature has been devoted to reporting about 
applications of the method in many domains and to presenting variants and 

enhancements of the basic technique. Extensive bibliographies can be found 

in Collins et al. (1988) and van Laarhoven and Aarts (1987). Several books 
have also been devoted to SA (see e. g. van Laarhoven and Aarts 1987, 
Azencott 1992, Vidal 1993, and Siarry and Dreyfus 1989). Special mention 
is due to a series of papers by Johnson and other authors (Johnson et al. 
1989, 1991, 1992) where a very careful and methodologically sound job is 

done in comparing SA with other heuristics on four classical problems: graph 

partitioning, graph coloring, number partitioning and the travelling salesman 
problem. We come back to this work in the next section. 
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2.3 An example: graph partitioning 

We present the graph partitioning problem investigated in Johnson et al. 
(1989): partition the vertices V of the graph G = (V, £) into two equal size 
subsets V, and V2 in such a way that the number of edges with endpoints in 

both subsets be minimal. 

There are different manners of applying SA to this problem. The most 
natural is the following. The solution space X is the set of bipartitions 
(V1, V2) of V with |W] = |Va| = |V|/2. The objective function (to mimimize) 
is the number of edges with one endpoint in Vj and one endpoint in V2. The 

neighborhood of the current solution (Vj, V2) is the set of all bipartitions 
that can be obtained by exchanging a vertex from V, with a vertex from Va: 

VWi= VU {te} \ {oy}, YW = VU ty} \ tr} (with ¢ € Va, y € VA). The size 
of the neighborhood is |V|?/4. The other tactical decisions can be made as 
explained in Section 2.1. 

Note that an alternative implementation is the following. Instead of re- 
stricting the solution space to bipartitions in subspaces of equal cardinal- 

ity (balanced bipartitions), one allows for “illegal” solutions (Vi, V2) with 

[Vi| 4 [Va]. The solution” space is the set of all bipartitions and the objec- 
tive function includes a term which penalizes unbalanced bipartitions: 

F(V,,V2) = number of edges with one endpoint in Yi 

and one endpoint in Vz + y(/Yi| — |Val)? 

where is a positive constant to be tuned. The neighborhood of a (non- 

necessarily balanced) bipartition is made of all bipartitions (VJ, Vj) with 

(Vj = VU {a} and V} = Va\{2}) ot (Vi = Va\{y} and Vi = VaU{y}), 2 © Vs 
y € Vy. The advantage of this implementation is to provide new routes for 
escaping from local minima and to reduce the size of the neighborhoods. 

As SA is a randomized algorithm, it is advisable to make a large number 
of independent runs. That’s what Johnson et al. did in comparing the second 

implementation of SA with a local search algorithm (with the same neighbor- 

hood) and the Kernighan-Lin specialized heuristic (see Johnson et al. 1989 
and also Section 3). Roughly speaking, they conclude that SA outperforms 
local search; it beats Kernighan-Lin on random graphs if running time is not 

taken into account and works slightly better if comparable times are allo- 
cated. However, on geometric random graphs (i. e. graphs with a special 
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kind of geometric structure, see Johnson et al. 1989), SA is outclassed by 
Kernighan-Lin. Anyway, the running time which is necessary for an effective 
annealing is usually long compared with the time needed by deterministic 
heuristics. 

3 More about Simulated Annealing 

3.1 Introduction 

” Annealing is a potentially valuable tool but in no ways a panacea”. This 
is the conclusion of Johnson et al. in their second evaluation paper on SA 

(Johnson et al. 1991, p. 405). It is clear indeed that the theoretical results 
that insure the convergence of SA to the optimal solution are irrelevant in 
practice because the (necessary and sufficient) conditions on which they rely 
are strikingly violated in any practical application. 

It is also true that SA is not competitive in some problems (an example 
of which is number partitioning studied in Johnson et al. 1992) and that a 
certain amount of.work is needed to tailor SA to each particular application. 
This may appear as deceptive for the (lazy) people who dream of a final 

algorithm for solving all combinatorial optimization problems. Looking at 
SA on a more positive mood, one has to consider that its successes are 
remarkable, that a general heuristic can compete with the best specialized 

ones on a problem is surprising. But in my opinion, the main interest of SA 
is not there: it is that due to the conjunction of simplicity and effectiveness it 
offers a unique chance of understanding why a general heuristic can ever work 
or more precisely to characterize the (instances of) problems on which SA is 

competitive. While more relevant theory can also be expected, the simplicity 

of SA allows in addition for rigorous experimental work: Johnson e¢ al.’s 
following statement is certainly a lot more valid for more complex approaches 
like Genetic Algorithms or even Tabu Search: "Although experiments are 
capable of demonstrating that the approach performs well, it is impossible 

for them to prove that it performs poorly. Defenders of SA can always say 

that we made the wrong implementation choices” (Johnson et al. 1989, p. 
869). 
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As soon as solution space, objective function and neighborhood structure 

have been chosen, the only non-parametric choice in a SA implementation 

consists of selecting a cooling schedule family. As this, as well as parameters 

tuning, has been seriously investigated in some special cases, we report on 

these investigations in Sections 3.2 and 3.3 and we summarize the main 
practical conclusions. We also give a short non-technical overview of some 
existing theoretical results in Section 3.4. This is because this theory, even 
irrelevant in practice, has been and remains a source of inspiration in the 

trials for improving the method or providing generic solutions to the tactical 
choices involved. Note also that a similar role is played by the thermodynamic 

analogy in particular for suggesting adaptive cooling schedules (see Section 
3.3.2). 

3.2 Tuning the parameters of the basic model 

In this section, we formulate some comments and practical recommendations 

in view of choosing the parameter values in the basic implementation of SA 

with geometric cooling schedule (see Section 2.1). 

3.2.1 A graphical tool 

Notice first that an elementary but useful tool for eliminating bad parameters 

choices is a plot of F* (the best observed value up to step n) against time, 
i.e. the number 7 of steps. Such a graph usually looks like illustrated in 

Figure 3 in the case of acceptable geometric schedule. 

An initial but not too long period of slow improvement is considered typi- 
cal of a good choice of the parameters. Similarly, at the end it is advisable to 
wait for a clear sign that no substantial further improvement will be obtained 
before stopping. Note that non geometric cooling schedules yield different 
shapes (see Jolinson et al. 1989, p. 884). Note also that it is an a posteriori 
evaluation tool. 
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De 
Figure 3: Typical behaviour of F* during annealing with geometric cooling 

schedule. 

3.2.2 Initial temperature 

The initial temperature Tp of a geometric cooling schedule (it is also true for 
other schedules) is generally determined in order that the initial probability 
for accepting bad moves be approximately equal to a prescribed value po. 

This can be done by trial and error before starting the annealing process: 
the algorithm is run with a tentative initial temperature, the acceptance rate 
(of bad moves) is computed and Ty adapted. Then, the algorithm is restarted 
with the modified value of TJ) and so on until an acceptance rate near po is 

found. This procedure was used by Johnson et al., but they report (Johnson 

et al. 1991, p. 405) that the acceptance rate computed on the basis of a 

few iterations is not a very robust estimator of pp. They suggest for fixing 

Ty to use problem specific algorithms or computations based on the desired 
value of po and simple characteristics of the problem such as the size of a 

neighborhood. 

How can we choose a value for pg? It is commonly thought that it should 

be high. The idea is that the system must be allowed at the beginning to visit 
any region of the search space without much constraint. It was thought that 
this initial quasi-random walk was useful preparatory work which did not 
improve the objective function but would prove profitable in the long term. 
This seems not to be confirmed by experimentation. For example, in the 
graph partitioning problem, Johnson et al. have tested values of po ranging 

from 0.1 to 0.9 and conclude that from pp = 0.4 on, there is no improvement 
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in the final solution quality while computer use grows substantially. As a 
consequence, they worked with py = 0.4. It is probably advisable to make 
some preliminary testing in each specific problem. If one is not too much 

concerned with reducing computer time, high values of po will do no harm. 

3.2.3 Length of plateau and cooling factor 

For different reasons it is sensible to link the length L of the plateau in 
a geometric schedule to the average size of the neighborhood. In view of 
effectiveness, when temperature is low and almost all bad moves are rejected 
it should be given a reasonable chance of trying all the neighbours of the 
current solution at least once. This option is also a sensible way of taking 
into account the size of the instance at hand as long as it leads to feasible 
computer times. 

Turning now to the interrelations between L and the cooling schedule 
a, it is clear that they have positively correlated effects: increasing LZ or a 
tends to increase the number of iterations and should also improve the final 

solution. More precisely, doubling L or taking the square root of a should 

approximately double the total number of iterations. This is confirmed by 

Johnson et al. (1989, pp. 878-881) with the correction that increasing a (by 
taking square roots) seems to add less computer time for an equal improve- 

ment of F*. These observations are only valid in a certain range of variation 

of E and a. 

When a and/or L are increased beyond a certain point, improvement 

of F* becomes so slow that better results are obtained by allocating the 
available computing time to several shorter runs of the algorithm (starting 
from different initial solutions) rather than to a single very long run. For 
a fixed amount of computing time, there is some evidence of the existence 
of an optimal compromise between the number of runs and their lengths 
(see Johnson et al. 1989, pp. 880-881). It is clear however that SA is a 

very computer intensive algorithm and that too short runs do not yield good 

results. 

For being a little more specific, the values of £ and a used in graph 

partitioning experimentation by Johnson et al. are 

L = 16x the average size of a neighborhood 
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a = 0.95 

Those values are robust: mild variations of L and a do not yield dramatically 

different results and the same values are used for all instances. 

In conclusion, there is no single and general rule for choosing Z and 
a. However, due to the (extrapolated) robustness of the algorithm, a little 
preliminary experimentation quickly yields acceptable values. The general 
qualitative remarks above can also help. 

3.2.4 Stopping criterion 

Usual values of’, and € in the stopping criteria Stop 1 and Stop 2 (resp.) 
range from 1 to.5 (%). The constants Ky and K2 should not depend on the 
plateau length L.provided this length is linked to problem size as indicated in 
Section 3.2.3. Johnson et al. (1989) use Stop 2 with e, = 2(%) and K, = 5. 
It is advisable to control a posteriori the choice of the parameters by looking 
at the graph of’ Fi against time and making sure that annealing was not 
stopped too early. 

3.3 More: structural options and some improvement 

opportunities 

Besides parameter setting, there are relatively few degrees of freedom in a 
basic SA implementation: the choice of a solution space, an objective func- 
tion, a neighborhood structure and a cooling schedule. We briefly give some 
general advice concerning the three former and extend a little more on the 
latter. The last subsection is concerned with a few technical improvements 

on the basic algorithm. 

3.3.1 Solution space, objective function and neighborhood struc- 

ture 

Only general comments can be made at this level. Let us emphasize the 
fact already mentioned that better results can often be obtained both on 
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the viewpoints of solution quality and computer use, by modeling some con- 

straints as soft constraints, i.e. through penalties introduced in the objective 

function. Such penalties are monotone functions of the degree of violation of 
the constraints and vanish when the constraints are satisfied. This modeling 
option not only has an incidence on the objective function but also on the 

solution space as illegal or unfeasible solutions are considered. It is hoped 

that the solutions obtained at the end of the algorithm will satisfy the con- 
straints. If not, a way out is to use a specialized heuristic to transform an 

illegal solution into a solution that satisfies the constraints, without loosing 
too much on the objective function. It can also happen that solutions which 
nearly satisfy the constraints are acceptable in practice. This is the case for 
instance in complex scheduling problems where the due dates are in general 
soft constraints. 

The major reason for using soft constraints is to get simpler or smoother 

neighborhood structure. If one restricts oneself to feasible solution it may 
well be complicated and/or time consuming to generate a feasible neighbour 
to the current solution. Moreover, if the move is a complex transformation of 
the current solution, the change in the objective function resulting from the 
move may require explicit computation of the value of F on the new solution 

which can also take time. In extreme cases, one is even unable to generate 
a feasible initial solution. In graph coloring, for instance, a feasible solution 
is a partition of the nodes in classes such that two nodes in the same class 

may not be linked by an edge. Whether there exists such a partition in any 

fixed number of classes (>2) is a NP-complete question. 

Besides the possibility of easily generate it, another desirable property 
of the neighborhood structure is to allow for easy travelling throughout the 
space. In particular, it should be possible to access any solution from any 

other one by a finite chain of neighbour to neighbour moves. 

3.3.2 Cooling schedules 

The geometric cooling schedule used in the basic SA implementation is as 

far as one can imagine from the schedule that would theoretically insure 
convergence of SA to the optimal solution (see Section 3.4). In this schedule, 
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temperature is decreased logarithmically with time i. e. 

_ Cc 

~ 1+ log(k)- 

where & = 1,2,... is the index of the series of L steps at the same temperature 

T,. Johnson et al. experimented on the graph partitioning problem with this 
"logarithmic schedule” as well as with the two following ones 

Ty 

e A schedule where temperature is decreased linearly with k. 

e A schedule where the probability of accepting a move decreases linearly 
with k. 

At least for the graph partitioning problem, there is no improvement w. r. t. 
the usual geometric schedule (even when allowing more than twice the same 
computer time for the logarithmic schedule) and on the other hand, a lack of 
robustness can be observed. The quality of the final solution is sensitive to 
the choice of the initial temperature which is a major drawback when there 
is no rigorous way of assigning precise values to the parameters. 

In view of Johnsons’s results there seems to be no reason for renounciating 
to the geometric schedule. There is however a different category of schedules 

called adaptive which have been proposed. The idea is to monitor dynami- 
cally the temperature evolution: decisions are taken after each observation 

period (a plateau) and temperature is varied on the basis of the intensity 
of the search during the passed period. Roughly speaking, temperature is 
slowly decreased or maintained constant when quick progresses are made. It 

is more rapidly decreased when the performance stagnates. 

The following simple adaptive schedule was experimented with by John- 
son et al. (1989, p. 882): one observes the best value and the ayerage value in 

each series of L steps. If a series ends up with at least one of these observed 
values better than the corresponding ones of the preceding period, the series 

of L steps is repeated without temperature change. Otherwise, temperature 

is decreased by the usual factor a. This schedule did not provide better final 
solutions although computer use was substantially increased. 

More sophisticated attempts which in general rely on the thermodynamic 

analogy were made by several authors among which we point out Lam and 
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Delosme 1986, Huang et al. 1986, Pedersen 1990 (for further references see 

also van Laarhoven and Aarts 1987). All those approaches are based on the 

idea that quasi-equilibrium should be reached before temperature is varied 
and the change in temperature should be slow enough to allow to reach 
quickly a new quasi-equilibrium state for the new temperature. Although 
their authors claim that their approach leads to more or less spectacular 

improvement there is no methodic comparative study of such schedules in 
the available literature. 

3.4 Possible technical improvements 

We present a few suggestions for improving the efficiency of the basic SA al- 
gorithm. These suggestions were made by different authors and are evaluated 
in Johnson 1989 (pp. 881-888). 

3.4.1 Cutoffs 

Considering that it is the number of accepted moves rather than the number 
of trials that is important, it is proposed to stop the series of trials of a 

plateau as soon as a certain number of moves have been accepted. This 

number is chosen as a fixed proportion (= cutoff parameter) of the plateau 
length L. The main effect of a cutoff is to avoid spending much time at 

high temperature. In this, it is analogous to starting at lower temperature. 

Johnson et al. compared both approaches: for equal running times there 

seems to be little difference in solution quality. There can be an advantage 

in using a cutoff if it is more difficult to estimate a good initial temperature 

than a good cutoff parameter. 

3.4.2 More efficient choice of the moves 

If solutions in the neighborhood of the current one are chosen purely at 
random, there is a risk in the case only one neighbour is acceptable, that 

we miss it in a series of L trials. A way of avoiding this in the special case 

of the graph partitioning problem is to choose the moves according to a 
random permutation of the set V or vertices: in each series of |V| trials each 
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vertex will be considered for a move exactly once (in the order defined by the 
random permutation), This procedure seems to give better solution quality 
in equal computation time. It amounts to introducing an additional element 

of optimization in the local search (see also Section 5.3 for the description of a 
"locally optimized SA” algorithm which does not choose the moves at random 
but selects the best solution in a randomly generated subneighborhood of the 
current solution). Note that this approach is only applicable when there is a 

uniform description of all possible moves from any solution (i. e. a description 
which is invariant when the current solution is varied). 

Another trick for improving effectiveness in the end of the schedules is the 
rejection-free annealing of Green and Supowit (1986). At low temperature 

much time is lost in considering moves that will be rejected. The proposed 

alternative is the following: for each move z, compute its probability of accep- 

tance p;. Let P be the sum of all p,’s. This yields a probability distribution 
on the set of all moves, each move 2 receiving a probability p;/P. Select a 
move according to this distribution and accept it automatically. Green and 
Supowit prove that this is equivalent to ordinary annealing. It leads to time 
savings at low temperature. This interesting proposition is however difficult 
to apply in general as the possibility of efficiently computing and updating 
the p;’s is problem dependent. 

3.4.3. Approximate exponentiation 

As SA needs long runs to be efficient, a non-negligible speedup can be 
obtained by replacing the exact evaluation of the acceptance probability 

Pr = exp(—AF,/T(n)) by an approximation. The best thing to do is to 
use a table of precomputed exponentials. Johnson et al. do as follows. The 
domain of variation of AF, is bounded by T(n)/200 (move with negligible 
probability of acceptance: ~ 0.5%) and 57'(n) (move with negligible proba- 
bility of rejection: ~ 0.5%). Moves for which AF, is outside these limits are 
deterministically rejected or accepted. One computes 200AF,,/T(n), rounds 
it down and looks at the corresponding value of the exponential in the ta- 
ble. For the graph partitioning problem, using this table saves 1/3 of the 
computing time without altering solution quality. 

25



3.4.4 Better than random initial solutions 

Starting from better than random initial solutions is inviting. SA theorists 
have claimed that the initial solution was ”forgotten” (due to the ergodicity 
of a Markov chain, see Section 3.5) and it seems to be generally the case: 

e. g. in the graph partitioning problem, starting from the solution of the 
Kernighan-Lin algorithm does not lead to better final solutions than starting 
from random solutions. However, in the ”geometric” graphs experimented 
with in Johnson et al. (1989), initial solutions obtained through a special 

heuristic that takes into account the graph structure can be used to get 

better final results. The initial temperature must be chosen low enough in 
order not to destroy the initial structure of the solution (see Johnson 1989, 
pp. 885-887 for more details). 

3.5 An outline of some theoretical results 

The behaviour of SA has been theoretically studied by many authors. We 
try to give a brief overview of the main trends. 

The dynamics of evolution of the current solution in the search space 
during SA execution is that of a rather well-behaved Markov chain: the 
transition from the current solution z to another solution y (at current tem- 
perature T) is governed by the transition probability matrix Pp(z, y) defined 

by 

0 fy @V(z) andy #a 
1 

. 
< 

Pr(z,y)= 4 ify # ty €V(z) and AF <0 

Woy exP(-AF/T) ify #z,y € V(x) and AF >0 

1—YigePr(z,z) ifysa 

  

  

This corresponds indeed exactly to what is done in practice: a solution y 

is selected at random in V(z), each y € V(x) having probability 1/|V(z)| 
of being chosen. Then, AF = F(y) — F(z) is computed and if AF < 0, 
y is accepted (case 2 in the definition of Pr). Otherwise, a second random 

decision is made independently with probability exp(—AF/T) which yields 
the third case in the definition of Pr. The last case, the probability of 

remaining in z, is obtained by complementation to 1. 
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Two simple hypotheses insure that the Markov chains (at any fired tem- 

perature TJ’) tend to an equilibrium: 

e Hypothesis 1: Symmetry of the neighborhood system i. e. y € V(z) 
iff z € V(y). 

e Hypothesis 2: Connectivity, i. e. it is possible to reach any solution 
from any solution in a finite number of neighbour to neighbour moves. 

Under these two hypotheses, the evolution governed by Pr at any constant 

temperature T tends to a stationary distribution 

_exp(- £2) 
Pa(2) = FT exp(—F) 

This means that when enough time has elapsed, the probability of being in 

solution z is approximately pr(z) or equivalently, the proportion of the time 

spent in each solution z when the evolution is stabilized is pr(x). If one looks 
at the behaviour of probability pr when T is decreased to 0, one sees that 
pr concentrates more and more on solutions of "low energy” i. e. values of 

F near to the minimum. In the limit, po is concentrated erclusively on the 
global minima: 

0 if F(z) # Fain 
paz) = { en if2e {ye X: Fly) = Fam} =: Xmin 

What does a SA algorithm in practice? It is not a single (homogeneous) 
Markov chain as J’ varies and hence the transition probability matrix Pr. 

One can look.at SA in two ways: as a series of homogeneous Markov chains 
with different transition probability matrices or as a single inhomogeneous 
Markov chain (with transition probability matrix evolving with time). 

3.5.1 Series of homogeneous Markov chains 

On each plateau of the cooling schedule illustrated in Figure 2, a Markov 

chain with constant transition probability matrix Pr and unique stationary 

distribution pr is run for L steps (= transitions). If L is long enough, one may



consider that one is not too far from equilibrium at the end of the plateau. 
Suppose that T is not too abruptly decreased at the end of each plateau 
i. e. when the system is in ”quasi-equilibrium”. It is conceivable that the 
system will not be too much perturbated and will quickly reach a new quasi- 

equilibrium state for the new temperature aT’. Iterating the process until 

temperature is low, the probability of any solution z will be approximately 

pr(z) with small T which means that solutions far from the minimal value 
of F will almost be impossible. 

Such an intuitive reasoning was formalized by several authors: Aarts and 
van Laarhoven 1985, Lundy and Mees 1986, Otten and van Ginneken 1984, 
Mitra e¢ al. 1985. Some conditions on the cooling schedule must of course 
be imposed: those by Mitra ed al. (1985) are the most general and least 
restrictive (see van Laarhoven and Aarts 1987, pp. 17-26). 

3.5.2. Inhomogeneous Markov chain 

In this approach, the dynamics is that of a single Markov chain with time- 
dependent transition probability matrix: T is not bounded to follow a sched- 
ule as illustrated in Figure 2. It may even be adapted at each step. The 

problem is to give conditions under which the chain will end up in a global 
minimum with probability 1. Geman and Geman 1984, Gidas 1985, and Ha- 

jek 1988 investigated the problem. Later work is concerned with more general 

processes. We present here Hajek’s necessary and sufficient conditions on the 
cooling schedule that guarantee convergence to a global minimum. 

We first define the notion of reachability at a certain height: solution y 
is reachable from solution z at height h if there is a sequence of solutions 

I = Zp, 7,..., 2m = y for some n > 1 such that 241 € V(zi),7 =0,...,n—-1 
and F(2;) <A for alli =0,...,n. This is a very intuitive notion: it means 

that one can walk from z to y along a path that does not let climb above 
height A. The weak reversibility property is the following: y is reachable from 

z at height h iff x is reachable from y at height A (for all z, y, A). 

If the neighborhood structure is connected and weakly reversible and if 

the cooling schedule T(n) is a non-increasing sequence of strictly positive 

real numbers tending to 0, then the Markov chain with non-homogeneous 

transition probability matrix Pri.) will end up in a global minimum of F 
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with probability | iff the cooling schedule T(n) is such that 

Ss exp(=-) = 00 
n=l T(n) 

where d* is the maximal difference of height one can have to climb for escaping 
from a local minimum by the easiest path. 

Note that the condition on the schedule essentially assumes logarithmic 
decrease. For instance 

Cc 

1") = Tati 
satisfies the condition provided C > d*. 

4 ‘Tabu Search (TS) 

4.1 General presentation of Tabu Search 

Tabu Search (TS) is another local search strategy designed for escaping from 
local minima: even if there is no better solution than the current solution 
Z, in its neighborhood V(z,), one moves to the best possible solution z in 
V(#_) or a sub-neighborhood V'(z,) C V(z_) in the case where V(z,) is too 
big to be explored efficiently. If the neighborhood structure is symmetric, 1. 
e. if z, belongs to the neighborhood V(z) of z whenever z € V(z,), there is 

a danger of cycling when at the next step we explore V(z): there is indeed 
a chance that «, could be the best solution in V(z) in which case we would 
come back to z, and from then on, oscillate between z and z,. To avoid 

this situation and more general cycling situations, the idea is to store the 
last pairs (z,,2) of solutions in a list called "tabu list”. If the pair (z,, x) is 
in the list, the move x — z,, is forbidden for a certain number of subsequent 

moves, This principle raises some technical problems: storing a complete 

description of the last solutions visited and testing for each candidate move 
whether it is the converse of a move recorded in the list might be rather time 
consuming. An alternative is to store a characteristic or an attribute of the 
moves (it can be the transformation performed on the current solution, e. 
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g. flipping the ith coordinate value of a binary vector from 0 to 1). This 
can prove too restrictive or alternatively too permissive as illustrated in the 

examples below (borrowed from de Werra 1988). 

Example 1: Consider the search space X which is the set of pairs of 
distinct elements of the set A = {a, b,c, d,e} and have a look at the dynamics 
illustrated in Table 1. Suppose the converse of the last 3 transformations 

current solution | t ormation 

—ec 

ae 

  

Table 1: Example 1. 

are tabu. A move is the substitution of an element of A by another in a 

solution: e. g. "6 —c” means that bis replaced by c. Starting from ab € X 
and performing successively the moves represented in the second column of 
Table 1 yields the solutions below ab in the first column. The tabu list 

is updated at each step, the attribute of the last move (” transformation”) 
enters the list and the most ancient attribute in the list leaves it (as soon as 
it is full i. e. contains 3 transformations). When solution de is reached, the 
tabu list prohibits to move to ae which was not visited before: tabu is too 
restrictive in this case. 2 

Example 2: Let X be the set of triplets of distinct elements of the same 
set A = {a,b,c,d,e} and consider the dynamics shown in Table 2. The 

maximal length of the tabu list is fixed to 3. The tabu list is unable here to 
prevent cycling. a 

Despite the possible lack of effectiveness illustrated in the second exam- 

ple above, the tabu list is usually a list of one or several attributes of the 
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| current solution | transformation | tabu lst 

abc ced dee 

abd bee cob, 

d—c 

acd db bed, 
ce bh, 

dec 

abe         

Table 2: Example 2. 

recently visited solutions or (of the converse) of the most recent moves: these 
attributes should be chosen accurately. As shown in the first example above, 
the prohibition of solutions with a given attribute is likely to be restrictive in 
excluding much more solutions than the just visited one. To correct the bad 
consequences of this (not all consequences are undesirable), one offers the 
possibility of overwriting the tabu status of a move when it leads to a good 

enough solution. More formally, we define an aspiration level that describes 
what is a good enough solution. Two elementary examples of aspiration 

criteria are: 

e Asp 1: A solution is above the current aspiration level if it is better 
than any solution met before (as measured by the objective function 

F). 

e Asp 2: (This criterion may be used when the tabu list consists of pairs 

associated with moves x — y and composed of an attribute of the 
converse move y — z and the value F(z)) If the attribute of the move 
y’ —» x is in the tabu list, one allows for the move if F(z’) < F(z). 

Summarizing the above, we have the following scheme for a typical TS 

algorithm. 
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Tabu Search (TS) 

e Initialization: Select an initial solution z; in X 

F* e F (21) 

Ea 
z — TT 

Tabu list TL is empty. 

e Stepn = 1,2,...: z, denotes the current solution. F is used to store the 

best accessible value of F met during the exploration of the subneigh- 
borhood V‘(z,). Z denotes the solution in V'(zq) for which F(Z) = F. 
Initialize F to oo at the beginning of each step. 

For all z in V’(z,), 

If F(z) < F and (If the move (z, — =) is not tabu or if the move 
is tabu but passes the aspiration criterion) then F « F(z) and 
Tee. 

Inti — FT 

If F < F*, then c* + Zand F* — F. 

The appropriate characteristic of the move (z, — 2,41) enters the tabu 
list once the first entered characteristic has been removed from the list 

if the list was full. 

e End: If the stopping criterion is fulfilled, then stop. 

The list of the tactical choices that have to be made is somewhat longer 

than for SA. In addition, the usual choices are less standard. More positively, 

there is more room for creativity in a TS application. The principal decisions 
to be made are: 

e The specification of a neighborhood structure and possibly of a sub- 

neighborhhood structure (for the subneighborhood V’(z,) a generic 
possibility is to pick at random a fixed number of solutions in V(z,)). 

e The choice of the move attributes to be recorded in the tabu list. 
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e The choice of the tabu list length. 

e The choice of an aspiration criterion. 

e The selection of a stopping rule (usually the total number of iterations 
is fixed a priori). 

4.2 Bibliographic and historic note 

The idea of TS is due to F. Glover (Glover 1986). Similar views were devel- 
oped by P. Hansen (Hansen 1986) who formulates a steepest ascent /mildest 
descent heuristic principle. A comprehensive description of TS can be found 
in Glover et al. (1992) as well as a bibliography of about 70 papers and books 

including many application reports. Although the literature about TS is not 
as extensive as about SA, it remains that the method has been applied to a 

large variety of combinatorial optimization problems like scheduling, trans- 
portation, electronic circuit design, graph coloring, neural networks, ..., and 

so on. As far as'I know, there are no theoretical results such as convergence 
results about TS. 

4.3. An example: graph coloring 

The best way of.understanding exactly how TS works is to look at an appli- 
cation. A simple and convincing example in graph coloring is due to Hertz 

and de Werra (1987). The problem is to find a coloring of the vertices V of 
a non-oriented graph G = (V, £) such that the same color is not assigned to 
two adjacent vertices and the minimal number of colors are used, Hertz and 

de Werra consider alternatively the problem of coloring the vertices with a 
fixed number / of colors and minimizing the number of faults, i. e. adjacent 
vertices which are painted the same color. Hence, coloring adjacent vertices 

with the same color is accepted but penalized. The authors’ strategy con- 
sists in finding a perfect coloring (without faults) for a large initial value of 
1 then find successive perfect colorings for smaller and smaller |. The proce- 
dure stops when the algorithm is not able to find a coloring with the current 
number of allowed colors. 
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In this implementation, a "solution” z is any l-partition of V: z= 

(Vi,.--,V,). Clearly, in this approach, most of the solutions are not ad- 

missible (i. e. are not perfect colorings). This is just like in the second 
implementation of SA in graph partitioning. The objective function F (to 
minimize) is defined on all /-partitions z = (Vi,...,Vi) of V: 

t 

F(2) = DBI 
where E; is the set of edges whose endpoints are both in V;. The neighbor- 
hood V(z) is the set of all /-partitions which differ from z = (V,...,V)) by 
the transfer of exactly one "bad vertex” from some class V; to some other 

class V; (a "bad vertex” in V; is a vertex linked with another vertex of Vj). 
During local search, not all solutions of V(x) are evaluated (there are too 
many of them). A sample V’(z) is drawn at random from V(z): the size of 
the subneighborhood V'(z) is a parameter of the algorithm. Only non-tabu 
solutions or tabu solutions that satisfy the aspiration criterion are accepted 

in V(r). The best solution from V'(z) becomes the new current solution. 
The tabu list (TL) records the vertices transferred during the last & iterations 
together with their color before the transfer. The TL prevents a vertex trans- 
ferred during the last k iterations from coming back to its original color. The 
aspiration criterion is satisfied (and the tabu status of a transfer overwritten) 

when a move from solution z to solution 2’ is such that F(z’) < F(z) and 
never in the past has a move been improving a solution of value F(z) to one 
of value as good as F(z’). 

Note that some tricks are used to reduce computation time: the neighbor- 
hood random generation is stopped as soon as is found a non-tabu solution 
which is better than the current best solution. Special star-shaped configu- 
tations are searched for and reduced, i. e. some local optimization work is 

done on the current solution (see Hertz and de Werra 1987). 

The authors experimented on random graphs whose number of nodes 
ranges from 100 to 1000 and whose edge density is 0.5 (= probability of 

presence of each edge). They took the "magic number 7” for the length & of 
their tabu list, the size of the randomly generated subneighborhoods grows 

with the number of nodes of the instance at hand. The results are compared 

with those obtained by an implementation of SA which was run on the same 
instances: better results are obtained with TS and using less computer time 
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(Johnson et al. 1991 do not confirm this appreciation, see also Section 5.1 
below). The same authors also developed a so-called combined method which 
looks interesting and will be briefly discussed in Section 5.2. 

5 Tabu Search and mixed heuristics 

5.1 Comparing heuristics 

Let us come back to and extend a statement already made in Section 3.1 

about SA: none of the current general” heuristic principles is a panacea 

and all of them need substantial work to be tailored to a problem. Experi- 
mental work indeed tends to show that the way different heuristics compare, 
strongly depends on their implementation and the problem instance to which 
they are applied. In their exemplary investigations on the application of SA 

to graph coloring, Johnson e¢ al. (1991) compare implementations of SA us- 
ing different neighborhood structures and a classical heuristic that has been 
randomized (XLRF). Their conclusion indicates that the competition winner 
varies according to factors like the instance size, the edge density (for random 
graphs), the geometry of the graph (see Johnson et al. 1991, Table VIII, p. 
399). Johnson et al. also experimented with the TS algorithm described in 
Section 4.3 but do not confirm Hertz and de Werra’s conclusions: they find 

no general domination of TS over SA. A suggested explanation is that their 
implementation of SA is substantially faster than Hertz and de Werra’s. 

The clearest conclusion to be drawn from these experiments is probably 
that pragmatism should prevail: there is no reason for claiming the absolute 

superiority of any existing general heuristic. What we want to illustrate in 

this section is that it is not only allowed but can be profitable to depart 
from the orthodoxy and build up more complex but competitive algorithms 

that integrate some original principles of TS, SA or other heuristics: neither 
SA nor even TS is tabu! And this is also true for Genetic Algorithms and 

Neural Networks. Experiments which tend to mix the different methods will 

probably develop in the next years and some new general heuristic search 

principles and algorithms will hopefully emerge. This could also contribute 
to bridge the gap between Operational Research and Artificial Intelligence. 
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5.2 A combined algorithm for graph coloring 

For large graphs (more than 500 vertices), Hertz and de Werra in their already 
mentioned paper (Hertz and de Werra 1987) suggest to-use TS to solve partial 
problems included in another coloring graph algorithm (presented in Chams 
et al. 1987). In this approach, TS not only helps in coloring subgraphs 
but also in constructing a large independent set, i. e. a subset of vertices 
such that no pair of them is linked by an edge. The global graph coloring 

algorithm works as follows. Fix an integer g. Construct an independent set 
VY which is as large as possible. Repeat this construction in V \ VU, yielding 
V;. Then, in V\ (VU WY) yielding Vs and so on, until the number of vertices 

in V\(WUUWUV3U...) is smaller than g. All vertices of each set Vi, V2, 

..., receive the same color and the remaining (< gq) vertices are colored by 

using the TS algorithm described in Section 4.3. 

TS is able to find a large independent set in the following way. Let 
G' = (V',E’) be the graph in which we search for a maximal independent 
set. A (non necessarily admissible) solution z is a bipartition (5,5) of V’, 
where S, the candidate independent set, is evaluated by F’(z) = F’(S) = the 
number of edges linking two nodes within 5. Solutions z in which no ”bad” 

edges are present (/"(z) = 0) and |5S| is as large as possible are searched 
for. The algorithm starts with an estimation of the size p of the maximal 
independent set in V’ (theoretical results on random graphs are used). The 

solution space X is the set of all bipartitions (5,5) of V’ with |S] = p. The 
neighbours of a solution z = (5,5) are obtained by exchanging a vertex from 

S with a vertex from S. Two tabu lists of equal length are kept: T(9) (resp. 
T(S)) is the list of the last k vertices which arrived in S (resp. S). Let 
Zn = (Sn, Sn) denote the current solution at the beginning of step n. One 
ranks the vertices of S, in decreasing order of their number of neighbours in 
S, and the vertices of 5, in increasing order of their number of neighbours 

in S, (not in S,,!}. The first vertex in 5, \ T(S,) is exchanged with the first 
in 5, \T(S,) The algorithm stops as soon as F’ = 0 or after the maximal 
number of allowed iterations. If an independent set has not been found 
(F' > 0), the algorithm is restarted with p = p — 1. 

According to Hertz and de Werra who report on experiments made on 
samples of random graphs (density 0.5), it is advisable to use the combined 
algorithm when the number of. nodes is well above 500. In such a case, the 
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search for large independent sets is stopped when the number of not yet 
colored nodes falls below q = 500. Johnson et al. (1991, p. 400) suggest that 
there is much room for further improvement both with new implementations 

of TS and SA and with hybrid algorithms like the one just described. 

5.3 About heuristic search principles 

It has been shown in the preceding section that it could be helpful to inte- 
grate general heuristics into a specialized algorithm. We will now illustrate 
the possible fertilization due to mixing techniques borrowed from different 

general heuristics, namely TS and SA. The particular examples described 

below can be interpreted as successful applications of general principles of 
heuristic search, 

According to Glover (1986) a good heuristic search strategy is a succession 
of phases of diversification and intensification, the alternance being governed 

by the exploitation of historic information. Typically, the descent algorithm 

lacks diversification phases while the "intensification” is permanent (local op- 
timization). Both TS and SA allow to explore different regions of the search 
space instead of being trapped in local minima: the tabu list as well as high 
initial temperature are diversification devices. In SA, the relative importance 

of intensification w. r. t. diversification is increasing with time as tempera- 
ture is decreasing. Tabu Search has built-in elements of diversification and 
intensification and it is easy to imagine additional ones, e. g. 

e To penalize already visited regions. For instance, in looking for a max- 
imal independent set, one could replace F(z) = F(S) = number of 
edges in.S by 

F(z) = F(z) +a) u; 

where w,.is the number of iterations with node? in S and a is a weight- 

ing factor that generally varies with time (taking historic information 
into account or not). 

e Vary the length of the tabu list during the search (taking historic in- 
formation into account or not). 
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A systematic review of various ways of implementing the above principle 

in TS is provided in Glover et al. (1992). The principle however applies, in 
principle, to any kind of heuristic and is not specific to TS. To illustrate this, 
we briefly describe an application in which the above ideas were applied to 
SA and to TS. 

The problem can be characterized as a homogeneous grouping one. A set 

of J objects described by J characteristic properties has to be partitioned in 
groups of equal size K in such a way that the mean value of each character is 
approximately the same in each group. The problem can be obviously treated 

by SA or TS with a natural neighborhood structure: the solution space is the 
space of all partitions in subsets of size K and the neighborhood of a solution 
zg (i. e. a partition z) is the set of all solutions that can be obtained from z 
by exchanging two objects belonging to two different groups. A modification 
of the classical SA procedure, called "locally optimized SA” is obtained by 

replacing at each step the solution drawn at random in the neighborhood 

of the current one by the best solution in a subneighborhood of the current 
solution (like in TS). This constitutes an additional intensification element 
inspired from TS. On the other hand, in the basic implementation of TS for 
this problem, the determination of the objective function (which measures 
the degree of homogeneity of a partition) after one move is bounded above: 

if the best move in a subneighborhood causes the objective function to de- 
teriorate by more than an a priori fixed amount A, one generates another 

subneighborhood and searches for another move. A straightforward modifi- 
cation of this scheme consists in varying A during the course of the algorithm. 

This was done by introducing a ”cooling schedule” for A. In this case as well, 

it was another intensification element that was added. Both modified algo- 
tithms led to substantial improvement as compared to the original SA and 
TS simpler versions (see Liégeois et al. 1992). 

6 Genetic Algorithms (GA) 

6.1 General presentation of Genetic Algorithms 

A genetic algorithm (GA) may be described as a mechanism that mimics 
the genetic evolution of a species. The main difference with the two former 
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approaches, SA and TS, is that GA deal with populations of solutions rather 

than with single solutions. An obvious advantage is intrinsic parallelism but 
it goes beyond letting solutions evolve independently in parallel: solutions 
do interact, mix together and produce "children” that hopefully retain the 
good characteristics of their parents. GA can be viewed as a form of local 
search but in a generalized sense. It is not the neighborhood of a single so- 
lution which is explored but the neighborhood of a whole population: this is 
something different from the union of the individual neighborhoods due to 

interaction. The main operators used to generate and explore the neighbor- 
hood of a population and select a new generation are selection, crossover, and 
mutation. We describe those operators below. Note that the GA literature 
is rich in terms borrowed from Genetics, sometimes with a little of pedantry: 

we shall limit our use of the genetic jargon to a minimum. 

The first peculiarity of GA is that the genetic operators do not operate di- 
rectly on the solution space: solutions have to be coded as finite-length strings 
over a finite alphabet. This makes little difference with common optimization 
practice in some situations like mathematical programming problems with 0- 

1 variables as a natural coding of a solution is a bitstring containing the 

values of each of the boolean variables in some predefined order. However, 

this is less easy in some other situations and above all, the straightforward 

coding is not always the most appropriate. From now on in the framework of 
GA, when we write "solution” we mean "coded representation of a solution” 

unless otherwise stated. In the GA literature a string representation of a 
solution is named a “chromosome”. The feature associated with each string 

coordinate is a ”gene” and the value of a gene is an ” allele”. Each position 
in a string is a "locus” (in the simplest cases, each gene is associated with a 
locus). 

A GA starts with an initial population of say N solutions and let it evolve 
yielding a population of the same size N at each iteration. Very roughly, the 

(n + 1)th generation of solutions is obtained from the nth generation X™ 
through the following procedure: the best individuals (= solutions) from 
X) are selected, crossover operations are performed on pairs of them. This 

yields an offspring of solutions which will replace the bad individuals of the 

current population. Mutation is generally performed on a small proportion 

of the ’children”. 
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Let us go a little more into the detail. Each solution of the current 
population {z1,...,2,} is evaluated by its "fitness” which can simply be the 
value of the objective function in a maximization problem. More generally, 

the fitness of a solution is an appropriate monotone transformation of its 
evaluation by the objective function. Let F denote, in this section, the 

fitness function which we want to mazimize over the solution space. 

The selection of the "best” individuals from a given population is done 

according to their fitness but not in a deterministic way: solutions are drawn 
at random with replacement from the current population with a probability 

that increases with their fitness. A simple choice for such a probability is as 

follows: for all i = 1,...,N, x; is selected with probability 

F(z) _ Frin 

Der ( F(z) — Fin) 

where Frin = min{F(z;),j = 1,...,N}. Pairs of selected individuals are 
then submitted (with some probability y) to the crossover operation. There 
are lots of possibilities for defining this operator depending on the problem 

and its coding. The commonest example called ”2-point crossover” works as 

follows. Suppose the solutions are coded in bitstrings of length 8 and that 
the following pairs of individuals were selected 

01 
11 

011001 
000110 

Two positions, say 3rd and 5th, are chosen at random and the characters be- 

tween those two positions (inclusively) are swapped, yielding two ” children” 
solutions. In our example, we swap the characters at the 3rd, 4th and 5th 

positions in both strings 

01/01 1/001 0 1]0 0 ojoo1 
1 110 0 0)1 10 11/0 1 141 10 

Each child is then submitted to mutation (with some probability 4). The 

simplest mutation operator consists of choosing a position at random and 

substituting the character in that position by another character from the 
alphabet. For instance, working on the 8-positions bitstring 

010110041 
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and performing a.mutation at position 6 yields 

01011101 

The final step in the generation of a new population is the substitution 
of “bad” individuals of the current population by the (possibly mutated) 
children. The “bad” individuals are selected according to their fitness in 

a randomized way (much as was done for selecting the good individuals): 
solutions are drawn at random without replacement with a probability that 

decreases with their fitness. This procedure yields the (n + 1)th generation. 

The algorithm generally stops after a preassigned number of generations have 
been produced. 

As a summary, we present a schematic description of a typical GA. Note 

that function F (= fitness) is to be mazimized on the space X of coded 
solutions. Many variants of this basic scheme can be found in the literature. 

Genetic Algorithm (GA) 

@ Initialization: 

Select an initial population X) = {2{,. + 2h} CX 

| max{F(z!?),i=1,...,N} 

roe arg max{ F(z!"),i =1,...,N} 

e Step n = 1,2,...: X() denotes the current population of solutions 

a) Selection of good individuals from X™: 

Let {yj,j = 1,...,2M} be 2M individuals drawn with replace- 

ment from X'), the probability of choosing a”) being an increas- 

ing function of F(z”). 

b) Crossover: 

For k = 1,...,M, the crossover operator is applied to the pairs 
(Yok, Y2e+1) With probability x: this yields M pairs of children 
(Z2k, Z2e41) (which are identical to their parents with probability 

(1 — x)). 
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c) Mutation: 

For 7 = 1,...,2M, the mutation operator is applied to z; with 

probabilty yu: this yields 2M (possibly mutated) children w;,7 = 
1,...,2M@ (which are identical to z; with probability (1 — 4)). 

d) Substitution of the bad individuals: 

Draw 2M individuals from X™) without replacement, the prob- 

ability of choosing a) being a decreasing function of F(a). 
X+ is obtained by substituting the 2M selected bad” individ- 
uals from X') by the children {z;,j =1,...,2M}. 

For all j = 1,...,.N, if F(2*) > F*, then 

Fre F(z") 

re oer) 

e End: If (n+ 1) > a fixed number of iterations, then stop. 

6.2 A didactic example and some general remarks 

We illustrate the above complicated procedure on a simple example borrowed 
from Goldberg (1989, pp. 14 sq.). Consider the problem of maximizing 
F(z) = 2? on the set of integers {0,1,...,31} and let a GA be used for this 
purpose. An easy coding of the solutions is by bitstrings of length 5. Let us 
start with the initial population of 4 solutions in Table 3: it was drawn at 
random by coin tossing. 

In this example, the whole population is replaced by children at each 
iteration (i.e. 2M = N = 4). The good individuals selected for reproduction 

are shown in Table 4. Note that af) appears twice. A one-point crossover 
operator is used: all characters positioned after the selected cutpoint are 

swapped. The cutpoints for the two pairs of parents are shown in Table 4. 
The crossover probability x is assumed to be 1 and the mutation probability 

is z = 10-7. No mutation is simulated. 

The average fitness progressed from 293 in X to 439 in X@. Pro- 
ceeding in this way and due to the selection mechanism designed to favour 
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j | population {2 j =1,...,4} | solution | F(z) 

1 01101 13 169 

2 11000 24 576 

3 01000 8 64 

4 10011 19 361         
  

Table 3: Initial population. 

crossover 
j=l,...,2M site =w 

0110([1 4 01100 

100 11001 

  

4 
11/000 2 11011 

2 10/011 10000 

Table 4: First iteration. 

the fittest individuals it can be hoped that the final population will contain 

very good solutions. In the example a very good solution (11011 = 27) is 
already produced after one step. It is crucial however that sufficient diver- 

sity be maintained in the population in order to permit the exploration of as 
many "good regions” of the solution space as possible and not to restrict the 

search to the vicinity of a (local) maximum. Here again Glover’s concepts 
of diversification and intensification which were alluded to in Section 5 are 
relevant. The persistence of a diversified population can be achieved by a 
careful tuning of the (many) parameters of the algorithm, namely: 

® Population size, 

e Replacement rate, i. e. number of children substituting old solutions 

at each generation, 

e Crossover probability () and mutation probability (i), 

e Number of iterations. 
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But more structural choices have to be made as well, e. g.: 

e A good coding for the solutions, 

e Adequate crossover and mutation operators. 

These are probably essential decisions as it is generally believed amongethe 
GA community that the success of GA is due to the progressive proliferation 

of good schemata in the population, i. e. specific substrings which would be 

associated with properties which characterize optimal or near-optimal solu- 
tions. This clearly implies that the coding of the solutions should be in some 
sense meaningful, i. e. should implicitly give a semantic description of what 
is a good solution. For instance, in the above simple example, solutions with 

a” 1” in the first position are better than any solution with a 0” in the first 
position. The reader interested in this theoretical debate is referred to the 
next section for some more precise elements and more generally to the books 
by Holland (1975) and Goldberg (1989). 

6.3. Bibliographic and historic note 

The origins of GA lay in the foundation of a theory of adaptive systems es- 

sentially initiated by J. H. Holland. His book of 1975 ” Adaptation in natural 

and artificial systems” (Holland 1975) is the Bible of the GA community. 
An introductory account of the theory as well as its main developments and 

applications can be found in the excellent introduction to GA by Goldberg 

(1989). In fact, function optimization is the most trivial application of the 

theory which ambition is to be relevant in fields like data structure design, 

algorithm design, computer operating system adaptive control, ..., all fields 
belonging to computer science. Since De Jong’s thesis in 1975 however, a 
large part of the activity of the GA community has been devoted to the less 
ambitious but more accessible subject of function optimization (see Goldberg 
1989, pp. 126-127 for a list of applications of GA to optimization problems, 

see also the proceedings of specialized conferences on GA: Grefenstette 1985, 

1987, Schaffer 1989, Belew and Booker 1991, Schwefel 1991, Manner and 

Manderick 1992). De Jong is known for being the first who seriously inves- 
tigated in an experimental manner the potentialities of GA and he started



with the simplest possible situation, i. e. function optimization (De Jong 

1975, see also Goldberg 1989, pp. 106 et sq. for an account). 

The original motivations and backgrounds of the pioneers of GA probably 

induced a development at the frontiers of computer science. By now, research 
in GA can be considered to belong to the field of artificial intelligence (AI). 
The GA community appears as a sociological microcosm even though about 
half of the applications belong to the field of OR. It is remarkable that 

even when dealing with classical problems of OR, the GA researchers seldom 
compare their results in a systematic manner with those obtained by OR 
researchers. This is probably a behaviour which will tend to attenuate in the 
future (see e. g: the paper by Yamada and Nakano 1992 where the authors 
apply GA techniques to Job Shop Scheduling test problems). 

6.4 <A genetic algorithm for the travelling salesman 

problem (TSP) 

Several attempts at solving” the famous travelling salesman problem (TSP) 
have been made using different implementations of GA’s. We present here 
the most elementary of these algorithms in order to illustrate further the 
possible application of GA’s. In the TSP, a traveller has to visit C cities 

exactly once and go back to his starting point. The problem (which is NP- 

hard) is to find a tour of the cities at lowest cost (a shortest tour in the case 
of a euclidean TSP). In this GA for solving the TSP, a solution, i. e. a tour, 
is represented by an ordered list of the cities. For instance, if there are C = 9 
cities, 

3571248 69 

Tepresents the tour that passes successively in the cities 3,5, 7,..., 9 and then 
comes back from 9 to 3. A first difficulty is to define a crossover-operator 
as the usual 2-point crossover (see Section 6.1) is not applicable. Indeed, 

consider that we have to produce children from the parents 

A=3 57124 8 6 9 

B=1923 468 7 5 
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Suppose that we select the third and sixth positions for 2-point crossover. 

That would yield the following tours” as children 

8 6 9 
8 7 5 

3.512 3 4 6 

19/7 12 4 

  

but those tours are meaningless as some cities appear twice while some other 

cities are not visited at all. One of the crossover operators specially designed 

for dealing with ”chromosomes” that represent a permutation (as is the case 

here) is named OX (for order crossover) and works as follows. As for 2-point 
crossover, two positions are selected, let say the 3rd and the 6th as on the 

example above, both parents A and B are then prepared in order to make it 
possible to transfer the ”genes” 3 to 6 of A in the corresponding section of 
B and vice versa. To prepare B, for instance, holes (H) are created at the 
places where are the genes that will come from A, i. e. 

B: H 9|H 3 H 6|8 H 5 

Then, the holes are filled in by moving non-holes that are on their right in 

the chromosome. This starts from the second cut position (i. e. from gene 

in the 7th position on). When the last gene is attained one goes back to the 

gene in the first, second, ..., position, in circular order: 

B: 3 6|H H H H|8 5 9 

At the end of this process, there are only holes” in the exchange section and 

the genes from the exchange section of A can be imported, yielding 

B’: 3 6|7 1 2 4|8 5 9 

Preparing A similarly, one gets: 

A’: 7 1[2 3 4 6|8 9 5 

This operator seems particularly well adapted because it introduces the least 

possible perturbation in the relative positions of the cities by preserving as far 

as possible the circular order of the cities. Other types of crossovers belong 
to this class which is called "reordering operators”: see Goldberg 1989 (pp. 
166-179). 
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The problem of creating meaningless solutions arises also with mutation. 
That is why it is replaced by inversion in the application to the TSP. Starting 

from a chromosome A, two sites are selected at random, say the 3rd and 6th 

positions, and the order of the cities between the two selected positions is 

reversed: 

A": 3.5/4 2 1 7/8 6 9 

Applying these special operators as they are described above does not 
seem to allow to treat successfully problems of a reasonable size. There is a 
need for crossover operators that do not blindly mix pairs of tours but use 
problem specific knowledge and local optimization in the crossover operation. 

This is the case in the algorithm proposed by Grefenstette et al. (1985) whose 
results can compete with those obtained by SA on 200-city problems. Other 

approaches also combining local search with genetic search are reported to 
yield near optimal results on the Padberg 532-city problem (see the references 
in Mathias and Whitley 1992). This tends to show that obtaining good 

results with GA on combinatorial optimization problems often requires a 

rather sophisticated interpretation of the basic scheme. 

7 More on GA 

7.1 Overview of the theory 

A major piece of theory about GA remains the book by Holland (1975). 
However, GA in general and in that book in particular are not primarily de- 
signed for function optimization but as models of efficient adaptive behaviour. 
Hence, it is no wonder that the results are not concerned with convergence 
to a global optimum as for SA but with optimal or near-optimal sequences 
of decisions in the context of an unknown and uncertain environment. This 

distinction and its consequences are emphasized in a very convincing manner 

in De Jong (1992). 

Holland’s theory essentially deals with the notion of schema. A schema is 

a family of strings (i. e. coded solutions) that share the same values at certain 
positions while they take any value everywhere else. For instance, in a space 
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X where the solutions are encoded into 9-character bitstrings, #10 * 1 +0 * * 
denotes the set of strings whose 2nd, 3rd, 5th and 7th coordinates are equal 
to 1, 0, 1 and 0 respectively. The ”wild card” character ”*” indicates that 
any value is allowed, either 0 or 1, at its position in the string. In a space X of 

K-character bitstrings there are 2" strings (chromosomes) and 3“ schemata. 
Each string belongs to 2* different schemata and in a population of N strings, 
N2¥ (non necessarily different) schemata are represented. 

To a schema H are associated three quantities: 

e The schema order O(H) which is the number of fixed values in A (i.e. 
the number of ”non-wild card” characters). 

¢ The schema defining length 6(H) which is the distance between the first 

and last fixed positions in H. 

e The schema value F'(H) which is the average fitness on the set of solu- 
tions belonging to schema H. 

The so-called fundamental theorem of GA is concerned with the evolution 
with time ¢ of the number m(H,t) of solutions belonging to a given schema 
H. This result is based on 1-point crossover, i. e. a crossover operator which 

exchanges the substrings situated after the single cutting point. The theorem 
establishes that the following inequality approximately holds: 

Pu 1 A 
-1 

where F is the average fitness of the population, x is the probability of 
crossover, and yp is.the probability of mutation (2M = N in the parameter 
values introduced in Section 6.1). 

m(H,t +1) > m(H,t) == ~ pO(H)| (1) 

This result is usually interpreted as follows. The schemata with above 

average fitness, small order and short defining-length will proliferate. For 
such schemata, the factor multiplying m(H,t) in (1) bas the best chances to 
be larger than 1. Formula (1) is rather intuitive: schemata with large defining 
length are more easily disrupted by 1-point crossover while schemata of high 

order are destroyed by mutation. 

Note that as long as the factor multiplying m(H,¢) in (1) remains larger 
than 1, the proliferation of H is exponential. Is it a desirable feature? Well, it 
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is certainly not bad that schemata with above average fitness will proliferate 

in the next generation but this does not guarantee that globally optimal 

solutions will ever be reached. In order to understand the theory about GA 

one must remember that their original aim is not optimization but that GA 
are models of!adaptive systems. A GA produces sequential decisions in a 

decision process where uncertainty is present in the form of lack of a priori 
knowledge, noisy feedback and even time-varying payoff function (indeed 

in natural evolution there is no global objective function to optimize, but 

locally, one can define what is good and what is bad). The objective of the 
whole decision:process is to maximize the overall expected gain (or minimize 
expected loss): Hence, the striking difference with function optimization is 
that what is important here is the evolution process of the population (the 
trajectories of.the set of initial individuals) and not the presence or absence 
*at the end” of optimal or near-optimal individuals. 

Replacing:GA in the framework of sequential decision theory and looking 
there at sequential games with uncertainty as the k-armed bandit (the well- 
known slot machine but with k-arms each of them characterized by a different 
unknown probability distribution of payoffs), one can define an optimal strat- 

egy that minimizes the expected losses in a given number of trials. In order 
to allocate trials optimally, one has to give slightly more than exponentially 
increasing number of trials to the best observed arm. Transposing this to GA 

(which was done by Holland) shows that those are near-optimal strategies as 
they allocate exponentially growing representation in the population to the 

good schemata. 

In the above, we viewed GA as processing schemata. How efficient are 
they in doing that job? Computations due to Holland evaluate to approxi- 

mately N° the number of schemata usefully processed (i. e. the number of 

above average, low order, short defining length schemata that are not de- 
stroyed) in a. population of N strings at each step. This result is known 

under the name of "implicit parallelism” as N® objects are processed for the 

price of N. 

The above considerations have some consequences for the use of GA as 

function optimizers. First, the coding of the solutions should be as much 
as possible meaningful, i. e. schemata should actually be associated with 

features of the solutions which make them good according to the objective 
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function. In addition, these good schemata should have characteristics that 
allow for efficient reproduction, i. e. small order and short defining length. 
This is for instance the case with the simple example of Section 6.2: the 
schema | * * * * is a high quality one (it is the best of order 1 and the best 
of defining length 0). Finally, a good or optimal string should be character- 
ized by its belonging to a large number of good schemata ("building block 
hypothesis”). 

A second consequence is that using GA as function optimizers implies 
some adaptation of the original scheme. An elementary modification (also 
of application with SA) is to keep track of the best solution met. One can 
also force the best solution met to remain in the population. Another prob- 

lem with original GA used as function optimizers is that they do in general 
succeed in locating potentially optimal regions (probably by means of good 

schemata) but are less efficient for the final step of optimization which con- 
sists of locating more precisely the optimal solution. Roughly speaking, if 
the fitness varies in [0,100], population is likely to stabilize quickly in the 
range [99,100] but GA don’t make much difference between solutions that 
differ by one unit only. A solution to this problem consists of adapting the 

selection mechanism by dynamically rescaling the fitness function or alter- 

natively using the ranking of the solutions in a population according to their 
fitness rather than fitness itself. 

A third possible adaptation of original GA to optimization problems is to 
incorporate specific knowledge on the problem: see for instance Grefenstette 
(1985) for the TSP. 

In conclusion, the same statement about theoretical results is valid for GA 

as for SA. They are a source of inspiration for some tactical choices that have 

to be made but do not describe the behaviour of the actually implemented 

optimization algorithms nor do they help understanding what really makes 

them work (or fail). Note finally that some work is currently being done for 

establishing convergence results for GA in much the same spirit as for SA, 1. 

e. using Markov chain theory (see e. g. Davis and Principe 1991). 
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7.2 Beyond simple GA 

There are several more advanced techniques in the domain of genetic search. 
Let us mention for instance the "niche and speciation” techniques which 
aim at maintaining some part of the population (a species) in certain regions 

("niche”). This is done in order to get a better idea of the general topography 
of the search space and to locate the different regions with "high peaks”. In 

certain circumstances, high quality local maxima can be preferred to global 

maxima because of additional characteristics they could have due e. g. to 

their location in search space. The technique consists in only allowing for the 
replacement of a solution (parent) by another (child) when the new solution 
is similar (i. e. close in the search space) to the replaced one (for detail see 
Goldberg 1989 and references therein). 

Another interesting development is the parallelization of GA. We will not 
enter into more detail on this subject: the interested reader is referred to 
Goldberg (1989) for an overview and to Miihlenbein (1989) for a seemingly 
promising approach. 

Until the end of this section, we give a short introduction to the advanced 
topic of genetic-based machine learning and to the most common systems 

in the field, the classifier systems. Those are essentially algorithms which 

maintain and let evolve a population of rules called classifiers. Hence, it 
can be considered an expert system with learning capabilities. Among the 
few applications of such systems to optimization, let us mention scheduling 
(Hilliard et al. 1987, Bouffouix 1990). To be more concrete, we present the 
general structure of a classifier system in the context of scheduling. We follow 

Bouffouix’ work. 

The classifier system works in interaction with an environment which is 

in this example a scheduling problem of a certain type and an elementary 
scheduler. By this, we mean an algorithm able to produce a schedule provided 
a certain number of conflicts have been solved by an external instance. In 

Bouffouix’ work, the scheduling problem is of the Job shop type. A list 

of tasks composed of different operations are to be executed on different 
machines. Each operation must be done on a specific unique machine and 
the processing order of the operations within a task is fixed. What remains 
to be decided is the order and time of processing of each operation on its 

assigned machine. 
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Suppose our elementary scheduler tries to schedule the operations on 
each machine at their earliest possible processing date (which takes into 

account the precedence constraints between operations within a task and 

possibly ready dates associated to the tasks). Then, we will be confronted 

with conflicts between operations that compete for the same resource. At 

each elementary conflict, i. e. a conflict involving two operations, a message 

describing the conflict is sent to the classifier system which sends back a 
decision giving priority to one of the two competing operations. At the end 

of the process, when a whole schedule has been completed, the environment 

sends an evaluation of the schedule (e. g. the makespan) to the classifier 
system. The interactions of the system with its environment are summarized 
in Figure 4. 

  
  

Conflict description 
LN 
  

  

re 

Decision Classifier 

Environment 
Final Evaluation System 

ee 
            

  

Figure 4: Interactions between a classifier system and its environment. 

The internal structure of the classifier system is illustrated in Figure 5. 
The rule base (i. e. the set of classifiers) is the central part of the classifier 
system. The rules usually are of the type: 

If <condition > then < action > 

To each rule is assigned an evaluation, called fitness of the rule, which evolves 
with time. When a message describing a conflict comes to the system, the 
*matcher” looks in the set of rules for the rules whose condition matches the 

conflict description. The “selector” chooses one of the matched rules accord- 

ing to a probability which is a non decreasing function of the rule fitness. 
The ”action” of the selected rule is the decision which is communicated to 
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Figure 5: Internal structure of the classifier system. 

the environment: in our scheduling problem, it consists in choosing one of 

the two operations in conflict to be scheduled first. The rule fitness evolves 

according to a:complex mechanism of taxes and rewards. The fitness of all 

rules whose condition matches a message is decreased by a “tax”. The rule 
which is finally. selected pays a tax for being selected. When a schedule has 
been completed, the fitnesses of all rules which have been selected for solving 

conflicts for this schedule are increased or decreased according to the overall 
evaluation sent by the environment and all rules in the rule base pay a tax 
"for existing”. At fixed periods, i. e. after a fixed number of completed 
schedules, a genetic algorithm is used to produce a new generation of rules 
from the current population. This genetic algorithm works as described in 

Section 6 as the rules are usually coded by means of bitstrings. The rule 

fitness is used in the selection process. 

This type of complex system is clearly intellectually appealing but the 

difficulties for making it work properly are in proportion of the ambition. 
This is due mainly to the large number of parameters to be tuned and the 
collective character of the rule evaluation (reward or penalty after a complete 

schedule). Another weakness is the difficulty of dealing with rules that are 
other.than elementary, i. e. with complex conditions taking into account 
a non-trivial description of a conflict context. Finally, the rules produced 

through the genetic algorithm action on the rule base are difficult to inter- 

pret: one is generally unable to give them a sensible meaning in the context 

of the problem at hand. This leaves the door open for the suspicion that 
the emerging rules are closely dependent on the problem instance and will 
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change when another instance will be submitted. The above problems will 
probably not be solved easily except perhaps for very specific problems (see 

e. g. Goldberg 1989 for a list of applications in various fields). An interesting 
result. of the scheduling classifier system described above is that it is able to 
“learn” a definite rule: if the system is rewarded when it behaves for instance 
like the SPT rule (Short Processing Time first), one usually finds this rule in 
the rule base at the end even if it was not there at the start. 

8 Neural Networks (NN) for combinatorial 

optimization 

8.1 Discrete Hopfield nets 

General neural networks (NN) used in combinatorial optimization are known 
as Hopfield nets. We first describe their discrete state version, the continuous 
one being presented in Section 8.3. Consider a graph (or network) whose V 
vertices are called neurons and are associated a state value which is either 
—1 or +1 (0 or 1 can also be considered). The state of the whole network 
which evolves in discrete time ¢ = 1,2,..., is characterized by a state vector 
E(t) = (x1(t),...,2n(t)). Each connection between two neurons (= edge 
of the graph) is weighted: let (T;;;1,7 = 1,...,N) denote the connection 
weights matriz. 

The dynamics of evolution of the neural network is given by the following 

equation 

N 

r(t+1) = sgn[}? Ty2;(t) — L (2) 
j=l 

where (J;,¢ = 1,...,N) is a threshold vector associated with the neurons 

and sgn{...] is equal to +] or —1 according to the sign of the expression 

between brackets. The expression (2) receives the following interpretation in 

the language of NN: a neuron 7 is in its upper level (+1) if the sum of all 
“inputs” in 2, 0; Tj;2;, passes a certain threshold Jj. 

There are several modes for updating the state vector Z(t) when time 
elapses: the synchronous mode where all state variables are updated at the 
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same time ¢ on the basis of the values F(t — 1), and the asynchronous mode 
where state variables are updated one after the other and the updated values 
are used as soon as they are available. The asynchronous case has several 

variants according to the order in which the neurons are considered for being 
updated: in the order of their labels (: = 1,2,...,.N), according to a random 
permutation, ..., and so on. 

The energy E of such a system has been defined by the quadratic form 

1M N 
E(z) = ZL Le Tyrie; + ° Lz; (3) 

i=1j=1 7=1 

This quantity is related to the updating equation (2): the energy is non 
imcreasing along any trajectory F(¢) if the matrix T has some properties 
(T is symmetric and its diagonal elements are all 0). The evolution (2) of 
the system naturally drives it to stable states (i. e. state vectors such that 

z(t + 1) = E(t)) which are local minima of E. This feature can be exploited 

for optimization purposes. 

8.2. Examples 

How can we map a combinatorial optimization problem onto a NN as de- 
scribed above? There is no universal method for doing this. We present two 

examples of problem formulations below. 

8.2.1 The graph bipartitioning problem 

We consider once again the example illustrating SA in Section 2.3. In the 
NN formulation of this problem, each node is assigned a neuron z whose state 

xz; is +1 or —1 according to its belonging to VY or V2 (respectively). (Vi, V2) 
is a bipartition of the nodes. The connection weight -y;; of two neurons 7 

and j is equal to 0 if there is no edge between 7 and j in the graph and to 

a fixed positive constant if (z,7) belongs to the edge set. Hence, yj;2;2; will 
be 0 if 7 and 7 are not linked by an edge. If (2,7) is an edge, then y,;2;2; 

will be positive or negative according to whether i and 7 belong to the same 
class of the partition or not. Minimizing >; 0; y2:z; would lead to put 

all vertices in one of the two subsets V; or Vy. In order to get a balanced



partition |Vj| = |Va|, one introduces the term 4(); z;)? as a penalty in the 
energy function which finally reads 

1 1 
3 D De Hs i2j + y4AQL 3)" 

t oj i 

] 
—3 ita - Adee 

Boj 

The complete connection weighi is thus 

E(x) 

Ti = is —A 

The threshold vector is null in this case. 

8.2.2 The Travelling Salesman Problem (TSP) 

We consider a symmetric N-city TSP which means that the cost matrix 

C = (cap; a, 8 € set of N cities) is symmetric. The NN formulation is based 

on the representation of a tour by a permutation matrix 2 = (za:3a € set of 

cities, 2 = 1,...,N) where z,; = 1 if city @ is the ith city which is visited 

in the tour (w. r. t. an arbitrary starting point) and 0 otherwise. We have 
Ye lai = Fai = 1. Note that the representation is badly redundant each 

tour being represented by 2N different matrices (as there are no privileged 

origin nor orientation). 

One neuron is associated to each variable of the matrix. The state of the 

N? neurons is described by the matrix x = (z,;) whose elements are either 

0 or 1. The energy function E(x) is the sum of two types of terms: the cost 

of the tour z and several penalty terms that tend to force the respect of the 
constraints 

E(z) =aF, +6F,+¢eF3+ db 

where a, b, c, d are weighting factors (to be adjusted) and 

A(t) = YY taites 
a4 aft 

F(z) = DODD tate: 
+ @ Bfta 
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F3(x) (LD tai — NY) 
sD > Ye captai(ta,ie1 + 2pi-1) 

a pea i 
L(z) 

where Cog = Cga.is the cost for going from city a to city f. 

The first three terms F\, F,, and F3, modelize the constraints on the 
matrix z that will make it a permutation matrix. F, is minimal (fF, = 0) 

iff there is at most one ”1” on each row and Fy plays a similar role for the 

columns. F3 is: minimal (Ff; = 0) iff there are exactly N ”1”s in matrix 

z. The last term ZL expresses the length of a tour (it uses the symmetric 
character of the-TSP we are dealing with). 

In expliciting the connection weights in this NN, we get (using 6,; = 1 if 
a= 7 and 0 otherwise) 

Taigi = —@6ap(1 — 6:5) — 56:;(1 — bag) 
—¢ ~ dbap($ji41 + 51-1) 

The terms of the threshold matrix J,; are all equal to cN. As the state vari- 

ables in this model take 0-1 values, note that Equation (2) has to be trans- 
formed by means of the following affine transformation that maps {—1,1} 
onto {0,1} 

  

8.3 Continuous state neural networks 

The networks.that are actually used for efficient optimization are not exactly 

those described before. The solution space, i. e. the set of state vectors of 

the above networks, is the set of vertices of a hypercube {—1,1}% in the 
N-dimensional space (where N is the number of neurons). Due to this dis- 
cretization, the possibilities of escaping a local minimum are relatively scarce 
and the trajectories, i. e. the sequences of hypercube vertices visited due to 

the dynamics of the network, frequently remain stuck in a local minimum. 

One way of getting better results is to apply SA to the discrete network: 
elementary transformations are defined (e. g. flipping a "+1" in ”—1” or 
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conversely in the state vector). At each step such a transformation is chosen 
at random and accepted according to the SA rule, AF being here the differ- 

ence in the energy function due to the transformation. For applications of 

this technique, see e. g. Hérault (1991). 

Alternatively, another possibility for improving the situation is to allow 
the state variables to vary continuously in the [—1,+1] (or [0,1]) interval. 
This makes our neurons become analog neurons rather than discrete ones. 

The modelization of a problem remains unchanged but the state variables 
tmhust now be considered as continuous ones. What is changed is the dynamics 

that governs the evolution of the network. In analog neurons, one usually 

distinguishes the potential u; of the neuron and its output 2; (which is also 
its state). Time varies continuously and the potential evolves according to 
the following differential equation 

du; N 

= et LT — (4) 
j=l 

Note that at equilibrium, i. e. when ti = 0, Equation (4) reduces to Equa- 
tion (2) if z; is set equal to +1 or —1 according to the sign of u;. In general, 
the relationship between u; and z; is the famous sigmoid curve which is clas- 
sically used to model the relation between stimulus and response in real brain 

neurons. We have 

z,(t) = tanb(“) (5) 
where T determines the shape of this function at the origin. When T tends 
to 0, 2; tends to be sgn(u;). There are different ways of simulating the 
above dynamics in discrete time (see e. g. Takeda and Goodman 1986). The 
simplest transition mechanism postulates equilibrium (i. e. 4 = 0). Hence 
(4) yields: 

u(t) = DIT y2,(t) — hi 
i 

Then, the discrete time version of (5) allows to drop the potential u;: 

wilt) 

© (52 Ty2,(t) — hy) (6) 

z(t+1) = tanh( 

JF tanb|[ 

sl
 

3 
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Alternatively, (6) can be obtained by importing an approximation technique 

used in statistical physics, namely the "Mean Field Theory”. In this theory, 

the state x; of neuron ? is approximated by < x; >7, the mean state value 
of the neuron when the network has reached its equilibrium for a fixed value 

of T. Statistical mechanics tells us that at equilibrium, the probability of 
neuron 2 to be in the state x; = £1 is 

1 

= Tree) 

Hence < 2; >r= P(z; = +1).1+ P(x; = -1).(—1) = tanh(). This proves 
that the mean field approximation leads to the dynamics described by Equa- 

tion (6) which can be used either in synchronous or asynchronous mode. 

The mean field approach mainly applied to combinatorial optimization 
by Peterson, seems to be the most promising one. Results of experimentation 

on the graph bipartitioning problem are reported by Peterson and Anderson 

(1988). The authors considered graphs with number of vertices ranging from 
20 to 2000 and obtain results that are slightly worse than with ordinary SA 

but in much shorter time. The method is not very sensitive to the choice of 

A and T. The imbalance in the final partition is generally small and removed 
by means of a greedy heuristic (see also Peterson and Séderberg 1989 for a 

more efficient implementation). This good opinion is confirmed by Hérault 
(1991) who also experiments with "mean field annealing”, a method which 
consists in slowly lowering T in Equation (6) during the evolution. This last 
method gives quicker results of a slightly worse quality. 

The TSP was also investigated by Peterson through its mean field ap- 
proach. The results were found comparable to (slightly worse than) those 
obtained by SA on problem sizes up to 200 cities (see Peterson and Séderberg 

1989). 

8.4 Bibliographic and historic note 

The main application of NN is not optimization. NN were originally designed 

for simulating the brain behaviour. A pioneering work on the potentialities 
of formal NN is due to McCulloch and Pitts (1943) who show that any 
logic function can be realized by a NN. The main technical interest of NN 
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is their ability to process information (input signal) with a high degree of 
parallelization, the computations being distributed throughout the structure. 

In recent years, NN have been increasingly used for dealing with classification 

problems (in the wide sense: pattern recognition, vision, voice recognition, 

...) where their learning capabilities as well as their computing power (due 
to parallelism) are determinant features. A general and recent reference on 
NN is Khanna 1989. 

Optimization has been up to now a marginal topic in NN theory: see 
Masson and Wang (1990) and Chee-Kit Looi (1992) for recent reviews on 
this subfield. The first cited is specially illuminating. The conception of NN 

designed for optimization is due to Hopfield (Hopfield and Tank 1985). These 
are particular cases of recursive networks: the state of the network at time f+ 

1 is determined by its state at time ¢. For competitive optimization by means 
of NN, it seems necessary to modify the original dynamics of Hopfield nets 

as outlined in Section 8.3. A major trend consists in considering stochastic 
evolutions (among which are the so-called ”Boltzmann machines”, see Aarts 
and Korst 1989 and Masson and Wang 1990). SA applied to the discrete 
Hopfield net as well as the mean field theory (with or without SA) are relevant 
to this trend (see Peterson and Anderson 1987, 1988, Peterson and Séderberg 
1989, Hérault 1991). Stochastic evolution makes NN relevant to statistical 
mechanics theories: Hopfield nets with stochastic evolution are known in 
physics as spin glasses (Ising or Potts spin glasses according to the discrete 
or continuous character of the state space). Theoretical results about the 
evolution of such systems can be found e. g. in Mézard et al. 1987. 

Let us finally mention a particular NN approach for the euclidean TSP: 

it is known under the name of elastic net algorithm” (Durbin and Willshaw 
1987, Fort 1988, Hueter 1988, Angéniol et al. 1988) and is implemented on 
another type of NN, the Kohonen NN. Though it seems relatively competitive 

for the TSP, we did not present it in this section as the present paper is 
devoted to general heuristics. 

9 Conclusion 

In the conclusions of this long tutorial, I will distinguish the viewpoints of 

the practitioner and the theoretician. From a practical viewpoint, the only 
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concern is the effectiveness of the method used for solving a problem. Ac- 
cording to the effectiveness criterion, no universal hierarchy can be made 

neither between the four heuristics we considered nor between these and 
other methods. In front of a specific problem, it is not easy for the practi- 
tioner to choose an algorithm mainly because of lack of complete, pertinent 

and objective information on the available solutions. In the case of difficult 

problems (let say NP-hard optimization problems) one could consider the 
use of one of the above heuristics from the start or for improving an existing 
specific heuristic (specially if this is of descent type). It is however always ad- 
visable to inform oneself on whether good specific heuristics do exist for the 
particular problem at hand (as the Kernighan-Lin algorithm for the graph 
bipartitioning problem: see Johnson 1989). If the decision of implementing 
a general heuristic is made, I would advocate to begin with a simple one like 
SA or TS and then turn if necessary to the more complicated GA or NN or 
to other methods. This is because the time needed to implement SA or TS 

seems attractively short. For choosing further between SA and TS, let me 

summarize my opinion on how they compare in the following statements: SA 

and TS often yield solutions of similar quality; TS is in general much faster 
than SA; TS involves more tactical choices and hence needs more time to be 

implemented and adequately tuned. The choice will depend on the relative 

importance of computing time and implementation effort. So far for the first 
phase of the implementation of a heuristic. In a second phase, one can try to 

tefine the first implementation if the balance between the expected benefits 

and the additional research is favourable to more effort. In this case, many 

possibilities are open. If one remains in the domain-of general heuristics, a 

good and not too expensive idea is to combine good heuristic principles like 
in Liégeois et al. (1992). 

Finally, we turn to the theoretical viewpoint. There, the challenge is 

to explain why the heuristics do work or more precisely for what kind of 

problems (for which geometry of the search space) our general” heuristics 
are efficient. If this can be understood, the way will be open to the design of 
new general heuristics adapted to families of problems for which the present 

heuristics are not effective. 
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