STATISTICAL THEORY OF EXTREME VALUES (%)
a short summary by .

E.]J. GUMBEL, Columbia University

1. Definitions.

To a continuous statistical variable X correspond the probability functiorns
F{x) = Prob(X <x); P{x) = Prob (X > x}

The derivative f{x) = F(x) is called the density function.' T\;o distributions

are said to be mutually symmetrical if
B = 1 — Fy(—%)

The intensity function p(x) > 0 is defined as the logacithmic derivative
of the probability function, The return period T(x} of a value greater than
x is defined for observations equidistant in time or another measure by

. ) S
STy = —— > 1
L F,

This function increases with x.

A connected notion is the characteristic largest among 7 values #, de-
fined by '

Flu,} = 1 — 1/n
which increases with 1g ». The intensity function at x == #, is wiritten:

alin) = ay = nfle)

(*) Conférence faite & la Scciété belge de Statistique le 18 juin 1962.
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Let « (> 0) and 6§ be parameters, and tet ¥ be a reduced variable such

that
¥y == a(x — 9)

then Flafr — 0)] = ()

A probability -paper consists of a scheme such as in graph 1.

RETURN PERIOD T(x) —=

I

OBSERVATIONS ¥ —

PROBABILITY d{y) —=

REDUCED VARIABLE y —
VGraph I

The mth among # observations x,,, arranged in increasing order of magni-

tude, is plotted at

The return period scale serves for forecasting for large values of x, the
probability for the interval 0.32T to 3.31T is: 0,6827 as for E(x) = o
in the normal distribution. This theorem leads to distribution free control
mtervals.

2. Exact Theory.

The probability w (7, m, N, x) that the mth among » observations
ordered in decreasing magnitude is exceeded x times in N future observa-
tions taken from the same population fs

o ) — n} N ! ‘ + N 1< m<n
HREIRL TR I x m/(m—f-x (m+x)0<.v<N

The mean number of exceedances is

E(x) = mNj{n + 1)



i

Bl Gumbel — Spatistical theory of extreme values

The median number ¥ in the case N = nis x = {m — 1). A forecast of
the number of exceedances is more precise for the largest than for the median
observation. If N = 5 is large, and » = 'p/(N =+ 1}, the distribution
becomes normal. If N — 7 js large, and  remains fixed, the corresponding

lmw of rare exceedances

X 2

o, ) = (x+m‘ 1)( 1 )m—f—x

is similar to Poissons’s law. These methods of forecasting the number of
exceedances are quite general, because no knowledge of the initial distribution
is required,

The exact probability functions ®i(x} and 7,(x) of the largest, and the

smallest, of » independent observations are
) = ) m(x) = Pr(x)

If the initial distribution is symmetrical, then the distribution of the largest
value is symmetrical to the distribution of the smallest one, More generally,
to any distribution of the largest value, we can construct a corresponding
distribution of the smallest value (symmetry principle). For consecutive values
of n, the curves F {x) representing n are shifted to the right. Since the
density function ea(¥) at x = u_ s

ealt) = e

the curves Fo(x) become more (less) concentrated if the extremal intensity
@, increases (decreases) with n. In the first (second) case the precision of a
largest value increases (decreases) with the sample size # from which it is
taken. The analytical properties of &,(x) and ma(x) depend only on the
properties of the initial distribution for large {and small) values of x.

For any continuous distribution (possessing the first two moments) the
expected largest value E(x,) increases more slowly than \/;/E times the
initial standard deviation and more slowly than 14 \/# for symmetrical dis-
tributions. At the characteristic largest value, the probability ‘function be-
comes, even for moderate sample sizes,

B, (x,) = 1/e
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Therefore, the median larges£ value ;n exceeds the characteristic ‘one. . If
Hepital's Rule holds for latge x, in the form

R 4 1g f(x)
A dx
(distributions of the exponential type), the modal largest value % converges
to the characteristic largest value #, .

For the uniform distribution

) =1/6; 0 < x < g

the estimation’ of § from -the fargest value is more precise than from the
mear,

Nutmnerous tables of the probability and density functions, the expecta-
tion, median and variance of the largest values as functions of » exist for
the normal distribution (Pearson). Simifar tables can easily be constructed
for the exponehtiai, log normal and gamma distributions, The following
table gives some values of the characteristic fargest value #, and the extremal
intensity function e, . R C s

Distribution.
exponential  logisiic . normal
Characteristic largest value #, Ig n Ig # \/Zlg Tdn
Hxtremal intensity o, | 1 -1 —

For a known initial distribution, the exact distribution of extreme values
for # observations gives a simple criterion for the rejection of outliers.

3. dsymptotic Theory. TR

~The problem is: how does &, (x) behave if 7 and therefore x increase ?
This was studied first, op a purely numerical basis, for the normal distribu-
tion but: no-analytical results of - general validity were obtained. . The expo-
nential distribution is a better starting point. Different authors {Fréchet,
Mises, Gnedenko, Gumbel) have used different methods to obtain the asymp-
totic " probability function ‘requesting different conditions on the analytic
nature of the initial distribution. As shown in the following table distinc-
tions have to be made for three classes of initial distribution, namely the
exponentfal, the Cauchy, and the limited type. .The first two are unlimited
in the direction of the extreme. For the Cauchy distribution the moments
of an order / > 4 do not exist.
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“The usval derivation (Fisher and Tippett and Jenkinson) is based om
the stability postulate which requires that the maximum of the largest value
should have the same distribution as the largest value itself except for a
linear transformation of the vatiable, There are three, and only three,
asymptotic distributions of extremes shown in the tables in the form
—IgB(x) and —Ig (). -

The three asymptotic distributions of largest values.

Name —lg & (x) Variation . Conditions
. g
exponential | exp [—a{x— 8] —ow <x<+ o  plx) - -— T
Cavchy i (X'—-S)_k x?&‘,é>0 ( 2) () L
auc] X — x) —
N Y f—« # 2> )
PV €< g
limited (L KR B0 R
w—— § ] qJ> 7} ) o= X

The para;rneters here are chosen in such a way that » and ¢ stand for the
upper and lower limits and

@ () 2 l/e

The parameter § which corresponds to #, is again called the characteristic
largest value.

The symmetry principle leads to the three corresponding expressions for
smallest values. Let 7(x) be the probability of the smallest value to exceed x.

Then
exponential type = expla{x—8)] —ow<x<w

: e X S 4
Cauchy type —lg (%) - (m —_H—) wZX 00, £>0
. o
limited type :(H s)k xZe, 8> F>0

with the same conditions on the parameters.
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For the first type, the moment-generating functions for the variable
7 = afx—@) are

G =T = G = T(1 +3)

for the largest and smallest values, respectively. If an extreme value has
an asymptotic distribution, then the standardized values {x, — E)/J and
(¥ — x,)/s have the same asymptotic distribution. Here ¥ and r stand for
the sample mean and standard deviation.

Although the asymptotic distributions of extremes were first established
for independent observations it can be shown that they also hold for
observations where 7 consecutive observations are dependent provided that
m is very small compared to #.  Another important theorem states that the
two extremes are asympto-t;ically' independent. ‘The same holds for the mth
extremes, i.e, the second, third, etc. value from the top and the bottom.
Under certain conditions the extremes are independent of the sample quan-
tiles. It is not yet known under what conditions the extremes are inde-
pendent of the sample mean.

The theory has recently been generalized into more than one dimension.
However, bivariate distributions are not determined by their margins. There-
fore, we can only expect to find families of bivariate extremal distributions.

Let

—lgo(x) = & —lge(y) = 51 —lge(ny) = ¢

and et
= £y
the the general form for bivariate distributions given by Geffroy is
€=mn+ 780

where ¢ is an increasing convex function which behaves asymptotically like
a straight line. Only two special cases are known which can be written down
explicitly as functions of the marginal distributions, namely

é‘na — é-m + 77-1:1: 2 > 1

and
=&+ —allfi + 107 0<a<t

The cases m = 1 and « — O stand for independence.

4. Technical Applications,

In many technical problems, it is not the mean but the extreme values
which is of decisive importance, A bridge must not only withstand the
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mean discharge of a river, but its largest value to be expected within &
given period. A building must withstand the strongest wind to be expected
within a given period, represented on the return period scale, If we know
the initial distribution and if the sample from which the observed extremes
were taken is small, we have to use the exact theory for the analysis of the
observations and the forecast. If we know only the type of initial distri-
bution and the sample is large we have to use asymptotic theory. In most
cases some reasonable assu.rﬁptio-n about the type of the initial distribution
can be made, In many practical applications, however, the initial distribution
is unknown and the only observations available ate the extremes themselves.
In aeronautics, there are many measuring devices which give only the extreme
values. The extremal probability paper (see graph 2) then gives a criterton
indicating which of the three types should be chosen for the analysis of

observed extremes.

RETURN PERIOD T() —
J : |
2 10 100

OBSERVATIONS Xpp—>

PROBABILITY &(y} —
|

.5 .9 .99

REDUCED VARIABLE y —
Graph 2.

In the first and second asymptotic distributions of largest values, there
is no upper limit. Therefore; it does not make sense to speak of a maximum,
but only of the maximum which is the most probable one to be reached
within a given time. In the first distribution, the maxima increase as a linear
function of the return period. In the second one, the logarithm of the
maxima increase as a linear function of the return period, which may be
identified with the number of years in hydrological or climatological prob-
lems, or with the number of traverses of about the same length in aero-

dynamical applications.
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Many observations have confirmed the validity of the theory . The first
asymptotic distribution of largest values holds for the oldest ages at death,
floods, ie, the largest annual discharges of a river, the largest rain-falls, the
largest atmospheric pressures, the largest ternperatures, largest snowfalls, the
size of boulders in a sand pit, wind speeds, gusts, acceleration increments_,
effective gust velocities, maximum  ajr speeds and simifar aerodynamic
phenomena.  However, in certain cases, especially for the floods and the
wind speeds, a good approximation is also reached by the use of the second
distribution. ‘

The third asymptotic distribution of largest values which possesses an
upper limit has not yet found practical applications. '

The first asymptotic distribution of smallest values has been success-
fully applied to the minima of the atmospheric pressures, minima of tem-
peratures, the bresking strengths of rubber, the breakdown of voltages in
capacitors, The third asymptotic distribution of smallest values holds- for the
annual drougths of a river, for static and dynamic breaking strengths, for
fatigue failure, wave heights and the stresses on ships and airplanes, In
application to breaking strengths and fatigue failure, the probability " func-
tion is interpreted as a lifetable function. The use of this distribution leads
to a stafistical estimation of the minimum life, je,
before which no fracture occurs, and of the endurance limit, the stress so
small that the specimen tested may survive an infinity of cycles. The estima-
tion of these values, which cannot be observed, is decisive for the safety
of structures. “This author strongly doubts the validity of the estimations
of the endurance limit based on non-statistical procedures,
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