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MORE ON GOLDBERGER'S PREDICTOR

i
Ishay Weissman )

1, INTRODUCTION

Let yy eR’ and Y, eR® be two random vectors with expectations and co-

variance given by

(1.1) E a 8 » QF ,

where Xx) x, and )> 0 are known matrices of orders tXk, sxk and (tts) x (tts)

respectively, pe r* and rank x =t. A linear predictor for Y,, on the basis
2

of Yy> was suggested by Goldberger (1962):

- A -
(22) ¥2 =X, 6 +0,,9 1 (¥, -X, 8),

where 6 = x\a7) x)"xayy yy is the Gauss -Markov estimator of 8. Ina re-

cent paper, Loeff and Leclercq (1976) have shown that i, is the optimal predictor

by each one of the following criteria:

(a) Minimum mean square prediction error (MMSPE) among linear unbiased

predictors;

(b) Maximum likelihood prediction under normality;

(c) Minimum generalized variance of the prediction error among linear unbiased

predictors.
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All of their results are proved by differentiation and then solving the resulting

system of equations. The purpose of this note is to derive criteria (a) - (c) and

(a4) MMSPE amonglinear predictors with bounded error
 

by algebraic-geometric arguments only, i.e. by using orthogonal projections.

2. NOTATIONS AND PRELIMINARIES

Let A = {ph = x18 2Be ay be the regression sub-space, then the orthogonal

projection on A with respect to the inner -produce (x, a) z= xa Zz (x,Z€ R') is

'a-l ely! ,-l
P= .

Xj(0X) xy On

The Gauss -Markov estimator of » = EY, based on the observation yy isp = PY,

(e.g., Kruskal, 1961). Suppose we are told that EY, = Tp for some linear trans -

formation T : R° -~ R®, whenever EY, =. We shall show in Section 3 that

-1a -1 a8 _
(2.1) TA+0,,97, (¥)-#) = (TP +0,,9) Q)Y,=C¢ Y

ool

is the "best" predictor of XY, by each one of the criteria (a) - (d) (here Q=1-P).

Remarks. The definition of T is not unique. If EY, = Tp = T*h for all pe A, then

in particular Tp = TH Hence (2.1) is unaffectea when T is replaced by T*. One

choice of T is T = x,«\a;) x.)ear. Note that T = TP, TQ = 0 and that(1.2)

and (2.1) are identical.

3. THE OPTIMALITY OF coy,

In this section we provethat CoY) is the optimal predictor of Y2 by each one of

the criteria (a) - (d).

Proof of (a). The most general linear predictor ot Y2 is cy, +b, where C: aoa R®
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is a linear transformation and be R°, The unbiasedness implies Cut+b = Typ for

alle A. Hence b=OandC=TonA,. Let Cp = {C:Cx = Tx for all x¢ A},

then we haveto prove that

x 2 2
(3.1) = E|CY, - ¥,) = ECjY, -¥4I" -

eC

Assumefirst that Q31 = 0, then for CeCy

2 2(3.2) EICY, - Yj = Elle, -w) - (Y, - Tull

BIC, - wll” + Ey, - THI.

The last term is unaffected by the choice of C. For the other term, we have

2(3.3) =|] CY, -H)}h 6 =E||CP(Y, -1)]| 24 E|| CQY |||" +2E(CQY,, CP(Y, -#))

2= E|TP(Y, -4)||*+ ElCQY, ||? +2EQY,, T'TP(Y, -w)),

since C'C = T'T on A. It is clear now that the Cec, which will minimize (3. 3) is

the one for which CQ = 0, i.e. C= TP = cy: where Cc is defined in (1.3).

This proves (a) for the case M3, = 0. For the general case we write

= -1 -1 = ct *
(G4) CY) - ¥2 = (6 -02,9),)¥) - (¥2 -92)9),)= CY, - ¥D1

as a difference between two uncorrelated random vectors. As we have just shown,

the optimal predictor C*Y. of xy is one with C* = (T -02,97))P, and hence the
1

-1

11> So

Proof of (b), Under normality, the likelihood function is of the form

+ re F -1
optimal C for predicting 2 is (T -,9)))P + 02,0

Yo +
Ve -1) %)#

72
Y,-TH Y,-T

L(Y,,¥,,n) = K exp += a K exp{-4U},
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where K > 0 does not depend on Ye XY, and». In order to maximize L we have

to minimize U. In the case of Qn) = 0, we have

-1 -1
(3. 5) U = (¥)-b, 05) (Y, -B)) + (XY, - TH, a2, (YX - TH)

_ “1 -1 -1= (PCY, 4), OF, POY, -H)) + QY,,07, Q¥,) + (Y2-Tu, 035(¥,-TH))

-1
> (QY,,9,, QY))

with equality for p =p = PY, and Y, = Th=cy . Hence C_Y, minimizes U.
2 ol ol

In the general case, we make use of the one-to-one transformation {he X53 >

{p,¥%} » where y* is defined in (3.4). Now, y* and Y. are uncorrelated, and
2 2 2 1

1a Se op. é
are = PY, and ¥> = (T -9,,0)))PY,*

hence the optimal values for p» and XS

respectively, resulting in Y, = CoYy:

Proof of (c), The covariance operator (or matrix) of cy, - Y, for Cecp(and a 0)
2 12°

is

' ‘at tat
G(C) = Ca, ,c +Q,,=TPa,,PT +0Q0,,;9¢ +52»

and we have to show that det G(C) is minimized over Cp by c, = TP. Since

CQn,,2C'> 0, itis clear that

ent
det G(C) > det{TP0,,P'T' + Z,,} = det G(C,)

(see Rao (1965) p. 56, 9(ii)). When 42 # 0, we use (3.4) and the argument

thereafter.

Proof of (d). Criteria (a) and (c) restricted the choice of the optimal C to the

class Cp: Suppose now that we predict Y, by cY, +b. Then, assuming 942° oO,

we have
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(3.6) EGY, +b-¥,|7=EI Cy, yl? + EI ¥,- Tall? IC TH+ BY,

Under criteria (d), (3.6) is bounded for all pe A. This can only happen if C = T

on A, i.e., Cet, The best choice for b is then b = 0, If indeed b = 0 and Cee

then (3.6) is equal to (3.2) and the proof follows from the proof of (a), The same

is true in the general case where Ap f 0.

Concluding Remarks. The fact that bounded error (with b = 0) implies unbiased -
 

ness is also true in estimation (Kruskal 1961).

2,When Q is known up to an unknown positive constant at Q=o Qo say, then G,

depends only on O. and not on o*, When QF 0, the problem of predicting Y, is

equivalent to the problem of estimating EY, = TEY, on the basis of Ye2

Loeff and Leclercq (1976) minimize E||B(CY, - vai for arbitrary regular

matrix B rather than (3.1). This is not a more general problem but rather a

reparametrization of the same problem: to see this, define C= BC, Y= BY,,

and the problem is to find the best Cfor predicting San
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