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ABSTRACT

This paper focusesattention on recent advancesin the areaof discrete data analysis and

probabilistic choice models. The emphasisis put on the use of these methodsin an expla-

natory context. Thefirst part of the paperprovidesa survey of recently developed explana-

tory discrete (categorical) data methods(linear logit models, log-linear models, e.g.). The

secondpart is concerned with explanatory discrete choice models (multinomial logit models,

generalized extreme value models, e.g.). The paper concludes with a discussion of

promising new research directions in the area of discrete data and choice analysis.



he INTRODUCTION

Many data in social science research are ~ in contrast to those in

natural sciences - measured in a discrete rather than a metric way,

the major reason being that most measurement procedures in social

sciences (interviews, e.g.) have only a limited degree of precision.

Here the term 'discrete' measurement is used to refer to both (dicho-

tomous and polytomous) nominal and ordinal variables. In contrast to

metric variables such discrete variables can only have values in a

limited set of measurement categories (see also Roberts, 1979).

Methods and models for dealing with discrete data have already a long

tradition in psychometrics, sociometrics and applied statistics. In

the past decade, several of those discrete date methods and models

have also been applied in the area of consumer behaviour and marketing.

Only in recent years, non-metric data analysis has also received

profound attention in the main stream of economics. One of the fields

where the application of discrete data methods and models has shown

a considerable progress, is regional and urban economics, transporta-

tion economics and socio-economic geography, as many individual choice

data are resulting from surveys, questionnaires or interviews. Spatial

dimensions of consumer behaviour have been intensively analyzed in

locational problems, migration decisions and residential choice prob-

lems.

In the present paper, a review of methods and models for analyzing

choice behaviour of individuals or groups will be provided, with a

particular emphasis on spatial aspects.

Generally speaking, discrete data analysis can be subdivided into two

main areas, viz. exploratory discrete data analysis and explanatory

discrete data analysis. Exploratory discrete analysis tends to suggest



and generate rather than to test hypotheses; it basically aims at

identifying and understanding complex data structures. In contrast

to explanatory discrete data analysis no (explicit) definite statistic—

al or econometric model is assumed and tested. Explanatory analysis
aims at providing insight into real-world processes or structures on

the basis of priori specified testable hypotheses.

There is a wide variety of exploratory statistical procedures such as

ordinal and nominal principal component analysis, factor analysis and cluster
analysis, correspondence analysis, geometric and homogeneous scaling

and symmetric log-linear modeling (see for further details also

Bahrenberg et al., 1984, and Nijkamp et al., 1984).

The main aim of the present paper is to highlight some recent major

methodological developments in the area of explanatory discrete data

analysis. Explanatory analysis attempts to test the existence of

causal structural relationships between endogenous end exogenous vari-

ables or between endogenous variables mutually. Explanatory methods

and models can be categorized into two distinct classes, viz. explanatory

discrete data analysis in a strict sense and explanatory discrete choice
 

analysis. Discrete data analysis in a strict sense aims to analyse

cause-effect relationships between a set of independent variables and
one or more dependent variables, where at least the dependent variables

are discrete in nature. This class will be discussed in section 2.

Discrete choice analysis aims to analyse the behaviour of (groups of)

individuals in a certain discrete decision context (residential migra-

tion, travel mode choice, labour force participation, e.g.). This class

will be the subject of section 3. The abovementioned classes are summarized

in Figure 1.

Exploratory discrete data analysis Explanatory discrete data analysis

Explanatory discrete Explanatory discrete
data analysis in a choice analysis
strict sense (section 3)
(section 2)

Figure 1. Categories of discrete data analysis.
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It is worth noting that the distinction between explanatory discrete
data analysis in a strict sense and explanatory discrete choice
analysis is not always sharply demarcated. For the sake of a systematic
treatment however, it is reasonable to separate these two classes (see
also Fischer and Nijkamp, 1984).

2. EXPLANATORY DISCRETE DATA ANALYSIS

2d, Introduction

Various classes of statistical/econometric methods and models in an
explanatory context can be distinguished. In the framework of dis-
crete versus metric variables Fienberg (1981) has made the following
classification of explanatory methods and models based on the level of
measurement of the pertaining variables (see Table 1).
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Table I. Classes of statistical problems (Fienberg, 1981, p.3).

Conventional explanatory metric data analysis is especially aligned to
cases D, E and F of Table 1. This last row of the table refers to
problems which can be dealt with by means of standard multivariate
Procedures. For instance, in case of observable (manifest) variables,
analysis of variance may be used for case D , regression analysis for
case E and covariance analysis or regression analysis with dummy
variables for case F . Alternatively, in case of manifest and latent
variables structural equation models with latent variables based
inter alia on LISREL approaches (see, for instance, Jéreskog, 1973) or
PLS approaches (see, for instance, Wold, 1984) may be employed.



Explanatory discrete data analysis is focusing attention on problems

of type A, B and C. These classes will be further discussed in
the next subsection.

 

DataMethods

Various kinds of explanatory discrete data methods and models may be

distinguished. A main subdivision can be made according to manifest
variables only and manifest and latent variables simultaneously (see

also subsection 2.1.).

In the first case of manifest variables only, linear logistic regression
and linear logit models have become popular tools; they may be regarded
as discrete analogues of conventional regression and analysis of
variance models. These models may be used for all categories A, B and
C from Table 1, in as far as the variables are measured in a nominal
sense. The parameters of these models are usually estimated by a maximum
likelihood (ML) procedure, although in case of type A also the GSK-
approach (see Grizzle et al., 1969 ), a non-iterative weighted least

squares procedure, has turned out to be a powerful tool.

Recently, also more general types of models for manifest nominal variables

have been developed, especially quantal response models which include

also probit models as a special case (see Finney, 1971).

Furthermore, in a case of problems of type A also asymmetric log-linear

models, a special case of the general log-linear model, can be used.

In the latter case only the marginals of a contingency table corresponding

to the independent variables have to be treated as fixed, so that the

product-multinomial sampling scheme with independent multinomial samples

for each independent by independent variables combination has to be taken.

In this way log-linear models can be utilized to assess the effects

of the independent variables upon the dependent ones. In addition, the

interrelationships between the dependent variables mutually can be

identified as well.
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The log-linear model parameters can be estimated in various ways: by
an iterative proportional fitting procedure (via ECTA or BMDP3F, e.g-),

by the abovementioned GSK-approach (via NONMET II, e.g.), and by the
iterative weighted least squares procedure developed by Nelder and

Wedderburn (1982) (via GLIM III, e.g.).

It is worth noting that neither the linear logit model nor the log-

linear model take into account an ordinal ranking that might exist
among categories of dependent variables. In case of manifest ordinal

dependent variables one may use the proportional odds and/or the propor-
tional hazards model developed by McCullagh (1980). The above mentioned

categories of discrete models have in recent years become a well
established part of the research methodology in social sciences (in-
cluding economics and geography). Less well-known are however latent
class models, a set of discrete analogues of structural equation models
with latent variables (see also Muthén, 1983). These models aim at

analysing the relationships among a set of discrete variables some of

them being manifest and others latent. There is a great diversity in

latent class models. Usually the assumption is made that the manifest

variables are conditionally independent given the latent variables.

In a way analogous to factor analysis two broad families of latent class
models can be distinguished, viz. restricted and unrestricted models.

Restricted latent class models are defined by specific patterns of

a priori fixed values of the conditional probabilities, by equality
restrictions on conditional probabilities in the same latent class, or

by equality restrictions on conditional probabilities in different
latent classes. ML-estimates of pertaining variables can be obtained

by means of the iterative proportional fitting procedure or by Fisher's

scoring procedure, a variant of the Newton-Raphson technique.



2.3. TheGeneralized Linear Model Approach as an
 

tingFramework

 

Recently, much progress has been made in integrating various explana~

tory discrete data models into a generalized framework, the generalized

linear model (GLM) approach, and in linking them to conventional linear

metric data models. This unifying framework has been advocated by Nel-

der and Wedderburn (1974) and has been implemented in the computer

package GLIM. It may encompass all categories of GLM's, as it is based

on a common unifying estimation procedure (the iterative weighted least

squares).

A GIM may be specified in general terms as:

  

  

-1 é.
=g (nite; isl,. a)

with:

yi dependent variable stemming from an exponential family

of probability distributions

random term

nt linear predictor, defined as follows:

K

ne = Ey Bx Mik @)

with:

Kip t measurements of K independent variables

a : parameters to be estimated.

In addition, g is a (monotonic twice differentiable) link function

which is defined as:

is 3g &,) (3)

with the theoretical mean equal to:

= 4E (y,) (4)
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In order to specify a certain GLM it is necessary to define explicitly

the linear predictor, the link function and the error distribution.
 

The specification of the linear predictor depends mainly on the data

generation process and the experimental design of the analysis. Some

standard members of the GLM family characterized by a specific link

function and an error distribution are presented in Table 2.

 

 

class of model link function error distribution

classical linear identity normal
regression
symmetric log- logarithmic Poisson
linear

asymmetric logit binomial or multi-nomial
log-linear

logit regression logit binomial or multi-nomial

probit probit binomial or multi-nomial
regression     

Table 2. Some representative GLM's.

As far as link functions are concerned, there is a wide variety of

such functions. For discrete data models, appropriate links are

provided by the logit transformation (for example, in the case of the

asymmetric log-linear model and the linear logit regression model),

the probit transformation (for example, in the case of the probit

regression model) or the logarithmic transformation (for example,

in the case of the symmetric log-linear model). It should be added

that also other variants of link functions are possible, for instance,

the identity function in the case of linear metric data regression

models.

Finally, the error distribution requires some closer attention.

The exponential family of probability density function includes many

continuous and discrete probability functions, such as the normal,

gamma, Weibull or chi-square probability functions in the continuous



case and the Poisson, binomial, multinomial or hypergeometric prob-

ability functions in the

 

iscrete case.

It should be noted that the Poisson distribution plays a similar central

role in discrete data analysis (including counted data) as the normal

distribution does in metric data analysis. Generalizations of the Poisson

distribution include inter alia the binomial distribution (if the de-

pendent variable has two categories) and the multinomial distribution

(if the dependent variable has multiple categories, so that this dis—

tribution may be conceived of as a constrained Poisson distribution).

The error components of the asymmetric log-linear, the logit regression

and the probit regression models are either defined by the binomial or

by the multinomial distribution.

Recently, also some progress has been made in extending the standard

GLM-approach by integrating composite link function models, quasi-

likelihood models and mixture models (see also Arminger, 1984, Flowerdew

and Aitkin, 1982, and Nelder, 1984).

In contrast to the simple form of a link function in the standard GIM

 

model (based on a one-to-one relationship between Wy and nj-variables),

composite link functions allow each uy to be a linear combination of

some intermediate quantities (say Rig lin which are themselves functions

of ny Examples of composite link functions can be found in latent

class approaches (see also Fischer and Nijkamp, 1984), and in the proportional

odds and hazards approach for ordinal variables (see McCullagh, 1980).

 

The class of quasi-likelihood models is marked by an incompletely defined

distribution. The only assumption made is that the variance is a given

function of the mean. For an example of such models in a spatial context,

see Aufhauser and Fischer (1984).

Finally, mixture models take for granted that the error distribution is

a mixture of several components instead of being homogeneous. Such

mixtures may be continuous or discrete. In the latter case, the number

of components may be known or unknown. An example of the latter

approach can be found in the compound Poisson migration developed by

Flowerdew and Aitkin (1982).

It may be concluded that the GLM approach offers a fruitful and unifying

research area for explanatory discrete data methods and models.
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2.4. Spatial Dimensionsin Discrete Data Models

The use of explanatory discrete data models has exhibited some hesitating
starts by the end of the seventies in the field of regional economics

and geography. Although regional economists and geographers have been
somewhat slow in recognizing the methodological merits of explanatory

discrete data analysis for further advances in regional economic and geo-
graphical research, there are recently various signs indicating that the

eighties will exhibit a major expansion of this kind of analysis in
spatial research.

The major bottleneck in adopting discrete data analysis as an explanatory

tool in spatial research is formed by the problem of integrating spatially

or temporal-spatially dependent data in the current discrete data methodol-

ogy. Thus there is an urgent need to incorporate the spatial auto- and

cross-correlation research in explanatory discrete data research (see also

Wrigley, 1984). A good illustration of this new direction can be found in
Odland and Barff (1982) who tried to link the logic of existing space-time

interaction tests to discrete data models in order to analyse the space-

time patterns of American urban housing deterioration. In a spatial inter-

action context Fingleton (1983) has shown that considerable care is

necessary when log-linear models are applied to spatially dependent data.
In such cases conventional model selection procedures (for example, Brown's
(1976) screening procedure and Aitkin's (1979) simultaneous test procedure)
may erroneously detect interaction effects between variables which are

spurious as a consequence of the spatial dependence of the measurements.

Fingleton proposes to solve this problem by modifying the standard calcu-
lation of Pearson's chi-square statistic, as this statistic may take

an inflated value in case of positive spatial dependence.

Fingleton (1980) has also tried to explore some of the major issues in
discrete complex data sample survey designs in order to integrate spatial

dependence effects in the context of log-linear modeling. Altogether,

there is a continuing need to combine discrete data models with methods

and models for analysing spatially dependent data.



An interesting illustration of new research directions in this framework

can be found in event history analysis (see Hannan and Tuma, 1984).

The main aim of event history analysis is to study discrete changes
or transitions in qualitative variables. Event history analysis is based
on data regarding discrete sequences and timing of transitions and it
may be regarded as a potentially powerful tool in multi-period explana-
tory discrete data problems.

In contrast to stationary processes implied inter alia by Markov processes,
event history analysis records data on all changes in a state variable

within some observation period. An event history w over a certain

period [t,,t,] can be represented as:

wlt) ty] = fy(t)sry <t< t)) ; (5)

where y(t) is the discrete state of a variable under consideration

at period t . Each discrete 'jump' from the one episode to another
one may be called an event, so that the discrete evolution of a certain

phenomenon may be described by means of its event-history.

According to Hannan and Tuma (1984) there are 3 different possibilities
to define statistical measures for assessing or predicting the probability
of occurrence of events:

- a survivor function defining the probability that an event will occur
after time the given the initial information on w, (by means of

ML methods);

- a waiting-time distribution function defining the probability of

occurrence of an event based on the cumulated distribution for the

waiting time (i.e., the length of intervals between successive events);
- a hazard function defining the probability of an event at time t

(in terms of failing by means of a hazard rate), given that the event

has not taken place before period t .

An important element in event-history analysis is not only the assessment

of the probability of occurrence of an event, but - more importantly -

also the assessment of which new state will be attained. Spatio-temporal

applications of event-history analysis can be found inter alia in analyses
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dealing with the dynamics of the labour market, of marital status and of

migration patterns.

Altogether one may conclude that the study of spatial dimensions in

explanatory discrete data analysis is exhibiting a promising growth path.

3. EXPLANATORY DISCRETE CHOICE ANALYSIS
 

3.1. Introduction

Discrete choice analysis aims to study the behaviour of (groups of)

individual choice~makers based on the assumption that the set of alter-

native choice possibilities is finite (for example, consumer choices, mi-

gration decisions, transport mode choices, industrial locational decisions,

etc.). In this respect, one may regard the frequently adopted assumption

of an infinite number of alternative choices in marginalist micro-economic

choice theory as rather unrealistic. Spatial choice models have recently

exhibited many advances and operational applications (for instance, in the

area of residential choice theory, transportation theory and labour market

theory (see for instance, Domencich and McFadden, 1975, Anas, 1982, and

Fischer and Maier, 1984). Such spatial models differ from general discrete

choice models only with respect to the fact that the choice alternatives

and/or the choice-makers are spatially distributed (though spatial inter-

dependence effects may exist).

In the past few years an extensive body of methodological research on

discrete choice analysis has been undertaken with a special emphasis on

the development or use of micro-oriented utility-based models. Such

models take for granted that the decision is made at the individual level

based on the principle of utility maximization. The individual choice is

the result of an evaluation of the expected utility associated with each

discrete choice possibility implying a probabilistic choice framework.

The main theoretical underpinning of utility-based choice models can be

found in Lancaster's (19]!) multi-attribute utility theory and in psychol-

ogical theories on individual choice behaviour (see Luce, 1959, and

Tversky, 1972, e.g.).



In contrast to deterministic models,probabilistic disaggregate utility

models conceive of the individual choice as a random decision. Conse-

quently, these models may also be based on the ‘bounded rationality’

paradigm (see Simon, 1957), while they may also provide a meaningful

analytical framework in case of unobserved or omitted relevant attributes.

The next subsection will be devoted to a concise formal representation

of discrete choice modeling.

3.2. AConciseFormalIntroductiontoAdditiveRandom

UtilityDiscreteChoiceModels

Most additive choice random utility discrete choice models assume that

the utility (a) associated with the choice of an alternative a by an

individual choice-maker i can be additively separated into two components,

viz. a systematic or determi

 

istic component, and a random component,Vis, &a ia
ey: Let A={1,...,A") be the set of disjoint choice alternatives and

I= {1,...,1'} the group of individual choice-makers. Then a random

utility model can be represented as follows:

ys = Veg * Bye (i,a) € (1,A) (6)

with:

Vig = VQ25458) (i,a) € (1,A) @)

and

esq 7 (25498) (i,a) € (1,A) (8)

where 24 is defined as:

2,4: = Oy) (i,a) € (1,4) (9)

while is a vector of attributes characterizing choice-maker i

 

and Y, 4 vector of attributes characterizing alternative a .
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Next, the preference structure of choice-maker i over the relevant

alternatives is defined as:

= (usa € A) (10)

 

Consistent choice procedures imply that alternative a will be chosen

if and only if:

u, > uly (a,a") € (AxA) qi)

The deterministic component accounts for the effects of the measured

alternative and the individual attributes.

The random component can represent several types of uncertainty in

decision making such as imperfect information about observation, unobserved

constraints that condition individual choices, unobserved attributes

affecting choice, measurement errors as well as other sources of non

homogeneous or inconsistent choice behaviour.

The most widely used statistical specification of the systematic

component of utility is the linear-in-parameters multi-attribute model

based on the theory of conjoint measurement:

7. = Ze +e. i,Vig 25,8 Sia (i,a) € (1,A) (12)

where the vector § being constant across individual choice~makers

reflects the tastes of the individuals. Alternative specifications and

extensions of the linear-in-parameters model have recently been suggested

by Timmermans (1984).

The fundamental equation of random utility discrete choice models is

given by the definition of the choice probabilities:

pla zy 2B) = prob{v(z;,,8) + e(2;,,8) >

VEesgr eB) + €C%gr 8)A

 

P; > (i,a) € (1,A) (13)



Clearly, the choice probabilities depend on the functional form of
the distribution of the error term vector. A major aim in discrete
choice analysis has been to find suitable distributions that lead to
computationally convenient choice probabilities and that also provide
a satisfactory realistic behavioural basis.

We will first consider now the most important conventional discrete
choice models which describe the behaviour of members of a group of
decision-makers facing exogenously given discrete choice alternatives
at a certain point in time. In this context, the hypothesis of
independently and identically distributed (IID) random disturbances
based on the Weibull distribution:

exp{- exp (-e;,)} i€L (14)

 

plays a major role, as it leads directly to the family of multinomial
logit (MNL) models. This hypothesis implies - in case of a linear-in-
Parameters specification - that choice-makers with identical measured
attributes have identical tastes and that the correlation betweén un-
observed or omitted alternative and individual attributes is zero.
The choice probabilities defining the MNL model can be expressed as fol-
lows:

P(al »8) = exp {v (2;458)} / = exp (v (2;1>B)} (15)
atéAa

 

The MNL model is in accordance with Luce's choice axiom of independence
of irrelevant alternatives. This so-called IIA property states that
the relative choice probabilities of any two alternatives depend ex-
clusively on their systematic utility components and are independent
of other alternatives of the choice set. Due to the IlIA-property, the
estimation and forecasting of individual choice behaviour is considerably
facilitated.

Because of its mathematical simplicity the MNL model has been preferred
to other conventional discrete choice models and has been often applied
in a variety of choice contexts.

It has to be recognized, however, that the underlying assumptions of the
MNL model are rather restrictive and may even lead to counterintuitive
behavioural predictions, especially if some alternatives are close
substitutes for each other. It is not difficult to construct hypothetical
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examples, such as the well-known ‘red bus - blue bus’ problem, that

violate the IlIA-property. Such violations of the premises of the

MNL model may lead to inconsistent estimates of the model parameters

and hence of the choice probabilities (see for an extensive discussion

of MNL models also Horowitz, 1984).

Some ways to relax the restrictive assumptions of the MNL model will

be discussed in the next subsection.

a3; GeneralizationsofMNLModels

The computational tractability of the MNL model has caused its current

popularity. At the same time, however, several attempts have been

undertaken to relax the LIIA-property in order to overcome the problem

of similarities between alternatives. Such research efforts resulted

in generalizations of the family of MNL models, inter al

of generalized extreme value (GEV) models.

in the class

 

The latter class has been advocated by McFadden (1978) among others; it

is based on the hypothesis of a broad family of multivariate extreme-

value distributions of the random disturbances and it allows positive

correlations among random errors, but it uses - in contrast to multinomial

probit models - random terms with the same variance. This class of multi-

variate extreme-value distributions can be specified as:

Fe (16)

 

) = exp [-G {(exp(-e;,) , a€ A), 2

 

where G is a non-negative distribution function that is linear

homogeneous in the term (exp (e;.) > a€A).

It can be demonstrated that the MNL model is a special case of (16).

Another very interesting special type of (16) is the nested MNL model,

which takes for granted a nested form of the decision structure, viz.

the assumption that an individual choice-maker makes an initial decision

independent of any other choice alternative, while in subsequent stages

decisions are taken conditional to the previous one, and so forth.



Inclusive value variables representing expectations of the outcomes
of lower-level decisions serve as feedback linking mechanisms of
nested MNL models. In this case, the utility function shows an
additive separable form. Sequential MNL models are obtained from
corresponding nested MNL models when no feedback effects are incor-
porated into the decision structure (see, e.g. Hensher and Johnson,
1981),

Finally, it is worth noting that GEV models can also be interpreted
as elimination-by-strategy (EBS) models, a general class of random
preference maximizing models proposed by Tversky (1972a,b). In principle,
such models allow rather general and flexible patterns of similarities
between alternatives without falling into the restrictive trap of the
IIA-property.

The most general family of random utility discrete choice models which
circumnavigates the IlA-property can be obtained by assuming that the
random disturbances are multivariate normally distributed with zero mean
and an arbitrary variance-covariance matrix. Under these assumptions,
the multinomial probit (MNP) choice probabilities are given by

v(z;B)-v(zsas B)tes,- Ri
p(alzis[8,2,) = f { nf }' '

Se Ol TYcance
alta

{ Nee, lo, r)4 tah des, a7)

where the number of integrals is equal to the number of alternatives
and Ne, |o, =.) is the multivariate normal density.
MNP models have the appealing feature of allowing the random terms
in the utility function to be correlated and to have unequal variances
(see Daganzo, 1979). Furthermore, they also allow individual taste
variation with identical observed attributes.

In contrast to the GEV models, however, the functional relationships
between the choice probabilities and the measured attributes cannot be
computed in an analytically closed form, except for the binary case
(see (17)).
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Due to the computational complexity of MNP models, they have some-
times been regarded as theoretically appealing and flexible, but
Practically unmanageable in case of a large number of discrete alter-
natives. Only quite recently, some progress has been made in
providing some more effective and accurate estimation procedures, such
as direct numerical integration methods (see Hausman and Wise, 1978),
iterative approximation methods based on Clark's approximation
(see Daganzo et al., 1977),simulated frequency methods (see Lerman
and Manski, 1981), or separated split models (see Langdon, 1984).
Clearly, once the computational problem of MNP models have been
tackled, they may provide powerful operational tools for discrete
choice analysis (see Van Lierop and Nijkamp, 1984).

3.4,

 

New approaches to conventional discrete choice models are especially
aligned to a multi-period context. It is clear that many distinct choices
(labour force participation, residential locational decisions, e.g.)
are not unique, but recurrent. In such cases, a multi-period or
~ preferably ~ a dynamic choice model has to be employed. The past few
years have exhibited an increasing interest in the development of discrete
choice models which explicitly incorporate dynamic aspects of choice beha-
viour.

A first interesting research direction can be found in stochastic panel
data discrete choice approaches (see Heckman, 198la, 1981b, Halperin,
1984, and Fischer and Nijkamp, 1984). Such approaches have been developed
for analysing the structure of discrete choices in a multi-period frame-
work and represent a more genuine behavioural research direction. In
such models two main effects may be distinguished, viz. serial correlation
effects and state dependence effects. Serial correlation (also termed
spurious state dependence) in the observed attributes is assumed to be
known to the individual choice-maker, but unknown to the analyst. State
dependence results from (sequential or time-dependent) impacts on the
individual's current choices from previous ones. Serial correlation is
due to omitted and/or unmeasured attributes which do not (or only
marginally) change over time. In his pioneering work, Heckman (1981b)
illustrates that serial correlation and state dependence can be represented
within the framework of a more general panel data discrete choice model.



This model includes serial correlation models, state dependence models

as well as any combination of serial correlation and state dependence

as specific cases. It may be added that recent advances in the field

of activity-based choice analysis or longitudinal discrete choice
analysis may also significantly contribute to a further development

of explanatory multi-period discrete choice models (see for more details,
Coleman, 1981, Halperin, 1984, and Koppelman and Pas, 1984).
The same holds true for recently applied methods of stated preference
techniques in micro choice analysis (see Kroes and Sheldon, 1984).

Another interesting research development concerns attempts to endogenize

the set of relevant choice alternatives. Conventional models assume that
the information about alternatives is given for the choice-maker. In

many cases, however, this exogeneity assumption is not very realistic,

as information on alternatives may be imperfect or depend on (one's own

or others') past choices. Personal experience, learning and communica-
tion may thus be important ingredients in discrete choice analysis. An

interesting illustration of these ideas can be found in De Palma and Le~

fevre (1982), who deal with a choice context in which choice-makers

interact in their decision process, so that the attributes characterizing

the choice problem of a decision-maker also depend on the behaviour of
other choice-makers. The authors then propose the use of a continuous-

time Markov model allowing individuals to interact with others during

their choice process.

New directions can also be observed in the field of non-linear choice

 

models, notably non-linearities in the observed individual or attribute

specification function, Some methods of representing variable trans-

formation involve inter alia the Box-Cox or the Box-Tukey generalization.

In the latter case the systematic utility component has a polynomial

form (see Gaudry and Wills, 1978, and Longley, 1984).

Finally, new research is also being undertaken in the area of dynamic
micro choice behaviour. An interesting contribution in this field was

made by Ben-Akiva and De Palma (1984), who developed a model that is

able to predict the decision of an individual to change his present state

in two stages: the decision to change (or to undertake a transaction),
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and - conditional to a change taking place - the choice of a new

alternative. The specification of this choice model is based on dis-

aggregate dynamic logit models. Altogether - in combination with

activity-based and longitudinal approaches - such dynamic models may

lead to a real break-through in disaggregate choice analysis.

 

ITEMS OF A RESEARCH AGENDA

The field of discrete data and choice analysis appears to provide an

extremely rich research area. Despite significant advances however,

there are still various open methodological problems left. A sample

of such problems making up a set of items on a research agenda will

be discussed here.

. There is a clear need for more appropriate estimation procedures

in the context of more complex types of sampling processes including

a stratification in exogenous and endogenous variables at the same

time.

. More attention should be focused on estimation procedures for panel

and longitudinal data discrete choice models including serial

correlation and state dependence effects.

. A closer analysis and identification of spatial auto- and cross—

correlation in the case of discrete spatially dependent data is

necessary.

. There is a need for developing methods for forecasting aggregate

population behaviour, given an estimated individual choice model

and a description of the environment in which future choices are

likely to take place.

. The validity and nature of discrete choice analysis in case of fore-

casting models deserve a critical evaluation (by means of back-casting,

e.g.)

. There is much scope for the development of simultaneous equation

discrete choice models in which one or more of the attributes

affecting choices are dealt with endogenously.
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