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Abstract

Weconsidera discrete-time queueing system with non-preemptive priority scheduling. Two classes
of traffic will be considered, i.e., high priority and lowprioritytraffic, which both generate variable-
length packets. We will derive an expression for the joint Probability Generating Function (pgf)
of the steady-state system contents of the high and the low priority traffic. From these, some
performance measures (such as the mean value of steady-state system contents and packet delay
of high and low priority packets) will be derived. These will be used to illustrate the significance
of priority scheduling. Our results can be used to analyse performance of buffers in voice/data

networks,
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1 Introduction

In recent years, there has been much interest devoted to incorporating multimedia applications in

IP networks. Different types of traffic need different QoS standards. For real-time applications, it

is important that mean delay and delay-jitter are bounded, while for non real-time applications, the

Loss Ratio (LR)is the restrictive quantity.

In general, one can distinguish two priority strategies, which will be referred to as Time Priority

and Space Priority. Time priority schemes attempt to guarantee acceptable delay boundaries to

delay-sensitive traffic (such as voice/video). This is achieved by giving it non-preemptive priority over

non-delay-sensitive traffic, and/or by sharing access to the server among the various traffic classes in

such a way so that each can meetits own specific delay requirements. Several types of Timepriority (or

scheduling) schemes (such as Weighted-Round-Robin (WRR), Weighted-Fair-Queueing(WFQ)) have
been proposed and analyzed, each with their own specific algorithmic and computational complexity

(see e.g. [6] and the references therein). On the other hand, Space Priority schemes attempt to

minimize the packetloss of loss-sensitive traffic (such as data). Again, various types of Space Priority
(or discarding) strategies (such as Push-Out Buffer (POB), Partial Buffer Sharing (PBS)) have been

presented in the literature (see e.g. [15]), mainly in the context of ATMbuffers. An overview of both
types of priority schemes can be foundin [1].

In this paper, we will focus on the effect of non-preemptive time priority scheduling. We assume

that time-sensitive traffic has non-preemptive priority over time-insensitive traffic, i.e., when the server

becomes idle, a packet of time-sensitive traffic, when available, will always be scheduled next, but

newly arriving time-sensitive traffic can not interrupt transmission of a time-insensitive packet that

has already commenced.

In literature, there have been a number of contributions with respect to non-preemptivepriority

scheduling. An overview of some basic non-preemptive priority queueing models can be found in

Jaiswal [3], Takacs [10] and Takagi [11] and the references therein. Khamisy et al. [4], Laevens et al. [5],
Takine et al. [13] and Walraevenset al. [16] have studied discrete-time non-preemptive priority queues
with deterministic service times equal to one slot. Khamisy [4] analyzes the system contents for the

different classes, for a queue fed by a two-state Markov modulated arrival process. Laevens [5] analyses

the system contents and cell delay in the case of a multiserver queue. In Takine [13], the system

contents and the delay for Markov modulated high priority arrivals and geometrically distributed

low priority arrivals are presented. Walraevens [16] studies the system contents and cell delay, in

the special case of an output queueing switch with Bernoulli arrivals. Furthermore, non-preemptive

priority queues have been considered by Rubinet al. [7], Stanford [8], Sugaharaet al. [9] and Takine
et al. [12,14]. Rubin {7] studies the mean waiting time, for a queue fed byan i.id. arrival process.

Stanford [8] analyses the interdeparture time distribution in a queue fed by a Poisson process. In

Sugahara [9], a non-preemptive queuein continuous timeis presented, with a Switched Poisson Process

arrival process for the high priority packets. Finally, Takine [12,14] studies a discrete-time MAP/G/1

queue, using matrix-analytic techniques.

In this paper, we analyse the system contents of high and low priority traffic in a discrete-time

single-server buffer for a non-preemptive priority scheme and a per-slot i.i.d. numberofarrivals. The

transmission times of the packets generated by both types are assumedto be generally distributed. We

will demonstrate that an analysis based on generating functions is extremely suitable for modelling this

type of buffers with priority scheduling. From these generating functions, we can then easily calculate

expressions for some interesting performance measures, such as the mean value of system contents and

packet delay of both traffic types. These closed-form expressions require virtually no computational

effort at all, and are well-suited for evaluating the impact of the various system parameters on the

overall performance. This makes it possibie to study the effect of priority scheduling and the impact

of the non-preemptive priority scheduling on the high prioritytraffic.

The remainder of this paper is structured as follows. In the following section. we present the

mathematical model. Before analysing the system contents at arbitrary slot boundaries. we first

analvse the system contents at the beginning of special slots in section 3. In section 4 we will then

analyze the steady-state system contents at arbitrary slot boundaries. In section 5, we calculate the
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moments of the system contents, while we give some numerical examples in section 6. Finally, some

conclusions are formulated in section 7.

2 Mathematical model

Weconsider a discrete-time single-server queueing system with infinite buffer space. Time is assumed

to be slotted. There are 2 types of traffic arriving in the system, namely packets of class 1 and packets

of class 2. We denote the numberofarrivals of class j during slot k by aj, (j = 1,2). The bivariate

random variables (a1,,,@2,) are assumed to be i.i.d. and are characterized by the joint probability

mass function

a(m,n) = Problay, = m,a2, = nj,

and joint probability generating function (pgf) A(z1, z2),

eo

A(z1, 22) & Elzy?* 23?*] = » a(m,n)zP25.
mn=0

Notice that the number of packet arrivals from different classes (within a slot) can be correlated. We
define the pef of the total numberof arrivals during a slot by Ay(z) 2 E[z%.*+92*] = A(z,z). Further,
we define the marginal pgf’s of the arrivals from class 1 and class 2 during a slot by Ai(z) & E[z*] =
A(z,1) and Ao(z) = E[z%+] = A(1,z) respectively. We furthermore denote the arrival rate of class j
(j = 1,2) by A; = Aj(1) and the total arrival rate by Ay 2 dy + Az.

The service times of the class } packets are assumed to be i.i.d. and are characterized by the

probability mass function

s;(m) & Prob[service of a class j packet takes m slots], m > 1,

and probability generating function S;(z),

oO

$;(z) = S> s;(m)2",
m= _

with j = 1,2. We furthermore denote the meanservice time of a class j packet by pu; = §;(1).

The system has one server that provides the transmission of packets. Class 1 packets are assumed

to have non-preemptive priority over class 2 packets, and within one class the service discipline is

FCFS.Due to the priority scheduling mechanism,it is as if class 1 packets (the high priority packets)

are stored in front of class 2 packets (the low priority packets) in the queue. So,if there are any class

1 packets in the queue when the server becomes idle, the one with the longest elapsed waiting time

will be served next. If, on the other hand, no class 1 packets are present in the queue at that moment,

the class 2 packet with the longest elapsed waiting time, if any, will be served next. Since the priority

scheduling is non-preemptive, service of a packet will not be interrupted by newly arriving packets.

Finally, we define the load offered by class j packets as py = Aju, (j = 1,2). Thetotal load is then

given by p © p; + po.

3 System contents at the beginning of start slots

To be able to analyze the system contents at the beginning of arbitrary slots, we will first analyze the

systemcontents at the beginning of so-called start slots, i.e., slots at the beginning of which a service

of a packet(if available) can start. Note that every slot during which the system is empty, is also a

start slot. We denote the system contents of class 7 packets at the beginning of the /-th start slot by

nju (J = 1,2). Their joint pgf is denoted by Nj(2,. 22). ie.
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Clearly, the set {(n1,¢, n2,)} forms a Markovchain, since the numberof arrivals of both classes are

iid. from slot-to-slot and only random variables during start slots are involved. If s? indicates the

service time of the packet that enters service at the beginning of start slot 1 (which is - by definition

- regular slot k) the following system equations can be established:

1. If ny = nay = 0:

Mil+1 = 41,k;

N2t+1 = 2k,

i.e., the only packets present in the system at the beginning of start slot /+ 1 are the packets

that arrived during the previous slot, i.e., start slot /. If the buffer is empty at the beginning of

slot 1, we set sj = 0.

2. If ne= 0 and ng > 0:

sp-l

Mi+1 = s OQ)kts

i=0

sp—1

Nei41 = Nat S O2k+1 — 1,
i=0

i.e., the class 2 packet in service leaves the system just before start slot 1+ 1. In this case, s/ is

characterized by probability mass function s9(m), since a class 2 packet enters the server at the

beginning ofstart slot !.

3. If my > 0:

spl

Rie. = Myet S Q1k+i — 1;
i=0

sp-1

Male. = Tait So eas
1=0

i.e., the class 1 packet in service leaves the system just before start slot 1+ 1. For nj, > 0, s; is

characterized by probability mass function s,(m), since a class 1 packet enters the server at the

beginning of start slot J.

Using these system equations, we can derive a relation between N;(z1,2z2) and Ni41(21,22). In the

remainder, we define E[X{Y}] as E[X|Y]Prob[Y’]. We proceed as follows, taking into account the
statistical independence of the random variables sj, (niz,m27) and (@1,44:,@2,44i),7 > 0:

E [ape23!)

= E [2y7* 257" {nit Sng = 0}]

april ap-t

Deke Naat x 9244571
=+E 2° 25 {ny = 0,n24 > 0}

I>Ni41 (21, 22)

apn) aprti
nyt SS ayeercl agit Sanaa

1=0
+E zy Zy ree {nig > 0}

2 A 21.2 en

= A(z).22)Prob[ny, = no. = 0) + Altea)p [22 {rig = Orgy > OF]
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4 Si(A(@1, 22)
2

= A(z, 22)N,(0,0) +

4 S1(A(21, 22))
21

E [zp™"'z9?" {ni > 03]

Se{AC 28)(0, 22) ~ M1(0,0)] (1)

[Ni(z1, 22) — Ni(0, 22)}-

Weassume that the system is stable (implying that the equilibrium condition requires that p < 1)

and as a result Nj(z1,22) and Nji1(21, 22) converge both to a commonsteady-state value:

N(21, 22) & jim Ni(21, 22):

By taking the | — oo limit of equation (1), we obtain:

[21 — Si(A(z1,22))] N(z1,22) = 2,aA(0,0) (2)

21$9(A(21,22)) — 228)(A(z1, 22))

22
+ N (0, 22).

It now remainsfor us to determine the unknown function N(0, z2) and the unknown parameter N (0,0).
This can be done in two steps. First, we notice that N(z1,z2) must be boundedfor all values of z)

and 22 such that |z;| < 1 and |z2| < 1. In particular, this should be true for z} = Y(z2), with
¥(z2) © $,(A(Y(z2), 22)) and |z| < 1, since it follows from Rouché’s theorem that there is exactly

one solution such that |Y(z2)| <1 for all such z2. Notice that Y(1) equals 1. The above implies that

if we choose z] = Y(z2) in equation (2), where |z2| < 1, the left hand side of this equation vanishes.
The same must then betrue for the right hand side, yielding

22A(¥ (22), z2) ~ S2(A(Y(22). 22)
22 — 52(A(Y (z2), 22)) ,

Finally, in order to find an expression for N(0,0), we put z1 = z2 = 1 and use de |’Hospital’s rule in

equation (2). Therefore, we need thefirst derivative of Y(z) for z = 1 and this is given by

N(0, 22) = N(0,0) (3)

Y'(1) = pa (Ar ¥'(1) + A2)

— AH (4)

1-p

Wethen obtain N(0,0):

N(0,0) = ———? | (5)
l-ptA1+A2

A fully determined expression for N(z,,z2) can now be derived by combining equations (2) and (3):

21(z2A(z1, 22) — $2(A(z1, 22)))

(21 — $1(A(21, 22))) (22 — S2(A(¥(22), 22)))
4 SAC(ep) ex)NSA22) — 2 A(21, 22))

(z1 $1(A(21, 22)))(z2 — S2(A(Y (22), 22)))

AUaaA(z). 22)) — 225)(A(z1.22)))}

Si(A(21,22)))(22 — S2(A(¥(22),22))) J’

 N(2,22) = N(0,0)

 

 

with N(0,0) given by equation (5).
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4 System contents at the beginning of arbitrary slots

In this section, we analyse the system contents at the beginning of arbitrary slots. The joint pgf of

the system contents of both priority classes at the beginning ofslot k is defined as:

Uy (21, 22) & Elzy* 257*}.

In order to derive an expression for U;,(z1,22), we have to know the status of the server during slot

k. There are 3 possibilities: the server can beidle, a low priority or a high priority packet can be in

service during slot k. This yields

Ug(zi,22) = E [2{"*z)?*{no service}] + E [z{! 2)?" {service class 2 packet}]
Uy ke Uk+ E [z}* 25?" {service class 1 packet}]

U,(0, 0)E [z)"* 25?" |no service] + (1 — U,(0,0)) (7)

{2e [z{** 25?"|service class 2 packet]

+R [zi** 2)?|service class 1 packet} } .
p

The last transition is found as follows: the server is idle during a slot if and only if the system was

empty at the beginning of the slot, i.e., Prob[no service] = U,(0,0). On the other hand, if the server

is busy during slot k, a class 7 packet is being served with probability p;/pr (j = 1,2). Ifslot k isa

start slot, we will assumethatit is start slot 1. If slot k is not a start slot on the other hand,the last

start slot preceeding slot k is start slot 1. Equation (7) then becomes

Ug(zi,22) = Uy(0,0) + (1 — Us (0,0) (8)

{Ze fay* 257" Ini = 0,n27 > 0} + SE [apt 257" Inia > a .

This can be understood as follows: the server is idle during slot k if there were no packets in the

svstem at the beginning of slot k, a class 2 packet is being served during slot k if there were no class

1 packets and at least one class 2 packet in the system at the beginningof start slot / and a class 1

packetis in service during slot k if there was at least one class 1 packet in the system at the beginning

of start slot 1. We denote the elapsed service time of the packet in service (if any) during slot k by

s,. The system contents at the beginningofslot k is a superposition of the system contents at the

beginning ofstart slot / and the arrivals during s;, yielding

Ux (21,22) = U,(0,0) + (1 -— Ui (0,0))
at atk ke

p2 O1k—-1 nat Do a2k-i

3 zy Zz inj, = 0,n2) > 0

at sf

pi nyt Do ayes Mart Do a2 kon

+ SE ly Fh ains > 0

= U,(0.0) + (1 — U,(0.0)) {Esz(ater 29)

— yy Nilen. 22) — Ni{0, 22)
ph T- Aj0.1)

Herebyis Syl?) (j = 1,2) defined as the pgfof the elapsed service time of the class 7 packet in service

at the beginning ofslot &.



We denote the steady-state version of U,(z1, z2) by U(z1, 22), ie.,

U(21,22) = lim U,(z1, 22).
ko

It is shown in e.g. [2] that the steady-state version of 5;4,(z) yields

S;(z)-1
lim S¥,(z) = Baye’eo)
k-+00 ak

(10)

for j = 1,2. It now remains for us to determine the unknown parameter U(0,0). Keeping in mind
that if the server is idle during slot k, slot k is a start slot, U(0,0) can easily be found as follows:

U(0,0) = jim, Prob[u1,4 = 2,4 = 0]

it Prob(ni) = m2= 0 and slot k is a start slot]
tl lim Prob[n1,) = 72, = 0} slot k is a start slot]Prob(slot k is a start slot]

k,lo00

There are three possibilities for slot k to be a start slot: the system is empty at the beginningofslot

k, slot k is the first slot of the service time of a class 1 packet or slot k is the first slot of the service

time of a class 2 packet. U(0,0) then becomes

U(0,0) N(0,0) [v (0,0) + 12400) or 1-0ad
My p be p

= ] — p. (11)

Using equations (6) and (10) in the steady-state version of equation (9), we derive a fully determined

version for U(2;, 22):

Si(A(z1, 22))(21 — 1) A(¥ (22), 22) -1

Ulan) = v0.0) { 2, ~ S\(A(21, 22)) * A(21,22) —1

21S9(A(21,22))(S1(A(21, 22)) — 1)

(21 — $1(A(z1, 22))) (22 — S2(A(¥ (22), 22)))
+ 2129(S2(A(z1, 22)) — $1(A(21, 22)))

(21 — Si (A(z1, 22)))(z2 ~ S2(A(¥ (22), 22)))
221 (A(z1, 22))(1 — S2(A(z1, 22))) |}

(21 — $,(A(21, 22))) (22 — $o(A(¥ (22), 22))) 1)?

 

 

 (12)

 

with U(0,0) given by (11). From the two-dimensional pgf U(z1, 22), we can easily derive expressions

for the pgf’s of the system contents of high and lowpriority packets at the beginning of an arbitrary

slot - denoted by U;(z) and U2(z) respectively - yielding

 

Ui(z) jim E [z*1*]

= U(z,1)

— Slr(2)= 1), Sil Ar(z))(2 — 1) So(Ar(2)) — 1
~ Go eT sAi@) 7? 2 = SA) { A(z) ~ * na} 03)

Ug(z) 4 jim Ele")

= U(1,2z)
_ Sp(Ao(2))(2—1) AW(2).
= OSSATETS)ey “)

Wecan also derive expressions for the pgfof the total system contents at the beginningof an arbitrary

slot - denoted by Ur(z) - yielding

Ur(z) & lim E [s¥hertee!
km oc

97

 



= U(z,z)

_ 5i(Ar(z))(z-1) A(¥(z),z)-1
= Qe) Ae= S(Ar(=) Ar(z)—1

2(z — 1)(S2(Ar(z)) — S)(Ar(z)))
(z — Si (Ar(z)))(z — $2(A(Y(z),z)))

In the special case that S)(z) = S)(z)(= S(z)), i.e., when the distributions of the service times of
high and low priority packets are the same, Ur(z) becomes

S(Ar(z)){z — 1)
z~ S(Ar(z)) ©

(15)

 

Ur(z) = (1-p) (16)

This is the expression of the pgf of the system contents in a single-class G]-G-1 queue with FIFO
scheduling. Indeed,if all packets have the sameservice distribution, the scheduling does not influence

the total system contents.

5 Calculation of moments

The function Y(z) can only be explicitly found in case of some simple arrival and service processes.
Its derivatives for z = 1, necessary to calculate the moments of the system contents, on the contrary,

can becalculated in closed-form. For example, Y’(1) is given by equation (4). Let us define A,;, Arr
and yj; as

87 A(z}, 22)

02,02;

a
Xj =

 

2)=z2=1

d? Ar(z)
dz?

2S;(2)
Bis dz?

I>ATr
 

Wp  

 

z=1

with 7,7 = 1,2. Nowwe can calculate the mean values of the system contents of both classes by taking

the first derivatives of the respective pgf's for z= 1. Wefind

1 An + Ar Aiur + A2H22

 

Eju;| = = 17[ur] atsr— 5 loa (17)

for the mean value of the system contents of class 1 packets and

1 22d 1 QuAie + pod Ag Aiwa +AElu] = po += HAAN 4 L2eiAi2 Heda | Ag AreI 2H22 (18)

2(1-p)(l-) 2 l-p 2 (1 — p)(1 — px)

for the mean value of the system contents of class 2 packets. Furthermore, the mean total system

contents can be found by taking thefirst derivative of Ur(z) for z = 1, yielding

 

 

1 wi Arr 1 M3 (ue — a1)HPAn Ao(H2 — H1)H1A12
Elur] = p+5 +5 19ur] +53 Ge 30pmanda) O-pd-mar) 9)

1 (ue — oa )(1 = pr )Av2 1 nmi t+ A2be2) (Ar = Arp)
2 (l-p)(l-wAr) 2 (1-p)(1- pi)

for the mean total system contents. It is easily verified that equations (17) - (19) satisfy Ejur] =

Eluy' > Elugl.

In a similar way. expressions for the variance can be calculated by taking the appropriate derivatives

of the respective generating functions. Byusing Little's law, the mean packet delay of a class 7 packet.

denoted by Eld,]. i-e.. the mean time a class j packet stays in the system, can be calculated as well,

ic. Eid)} = Eluy|/A) (j = 1,2).
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Figure 1: Mean system contents versus the total load

6 Numerica] examples

In this section, we present some numerical examples. We assumethetraffic of the two classes to be

arriving according to a two-dimensional binomial process. The joint pgf A(z1, z2) is given by:

A(ay,22) = (1- S(~ a) — 2a ~ 22)".
Thearrival rate of class j traffic is thus given by A; (j = 1,2). This arrival process occurs for instance

at an output queue of a NxN switch fed by a Bernoulli process at the N inlets (see [16]). Notice also
that if N — oc, the arrival process is a superposition of two Poisson streams. In the remainderofthis

section, we assume that N = 16. Wewill furthermore assume deterministic service times for both

classes.

In Figure 1 and 2, the mean value and the variance of the system contents of class 1 and class

2 packets is shown as a function of the total load p, when yz = 2 = 2. The fraction of the arrival

rate of class 1 traffic is 0.25, 0.5 and 0.75 respectively of the total arrival rate. One can easily see the

influence of priority scheduling: the mean, as well as the variance of the numberofclass 1 packets in

the system is severely reduced by the non-preemptive priority scheduling; the opposite holds for class

2 packets. In addition, it also becomes apparent that increasing the fraction of high priority packets

in the overall mix increases the amount of the high priority packets while decreasing the amount of

low priority packets in the buffer.

In Figure 3, the mean packet delay of class 1 and class 2 packets is shown - found by using Little’s

law - as a function of the total load p, when y4; = yg = 2 and thefraction of the arrival rate of class

1 traffic is again 0.25, 0.5 and 0.75 respectively of the total arrival rate. In order to compare with

FIFO scheduling, we have also shown the mean value of the packet delay in that case. Since, in this

example, the service times of the class 1 and class 2 packets are equal, the packet delay is then of

course the samefor class ] and class 2 packets, and can thus be calculated as if there is only one class

of packets arriving according to an arrival process with pgf A(z,z}. This has already been analyzed.

e.g.. in [2]. One can observe theinfluence of priority scheduling: mean delay of class 1 packets reduces

significantly. The price to pay is of course a larger mean delay for class 2 packets. If this kind of

traffic is not delay-sensitive, as assumed, this is not a problem. Also, the smaller the fraction of high

priority packets in the overall traffic mix, the lower the mean packet delay of both classes will be.

Figure 4 shows the mean system contents of class 1 and class 2 packets as a function of the mean

service time of the class 1 packets, when Ar = 0.2, 2 = 2 and thefraction of the arrival rate of class
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Figure 2: Variance of the system contents versus the total load

 

 

  
 

Figure 3: Mean packet delay versus the total load
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Figure 4: Mean system contents versus the mean service time of class 1 packets

1 traffic is 0.25, 0.5 and 0.75 respectively of the total arrival rate. In order to have a stable system,

i.e., the total load has to be less than 1, 4, must bestrictly less than 14, 8 or 6 when the fraction

of the arrival rate of class 1 traffic is 0.25, 0.5 or 0.75 respectively. For these values the mean system

contents of the low priority packets becomesinfinite (as shown in the figure). Because of the priority
scheduling, it can be seen that the service time of the high priority packets has a large influence on

the system contents of both classes, and this influence is more pronounced when thefraction of high

priority packets is larger.

Figure 5 shows the mean system contents of class 1 and class 2 packets as a function of the mean

service time of the class 2 packets, when Ar = 0.2, 4; = 2 and the fraction of the arrival rate of class 1

traffic is 0.25, 0.5 and 0.75 respectively of the total arrival rate. In order to have a stable system, i.e.,

the total load has to be less than 1, 2 must bestrictly less than 6, 8 or 14 when thefraction of the

arrival rate of class 1 traffic is 0.25, 0.5 or 0.75 respectively. Again, for these values the mean system

contents of the low priority packets becomes infinite. It can be seen that the service time of the low

priority packets has a large influence on the mean system contents of lowpriority packets, while the

influence on the mean high priority system contents is not too large. Nevertheless, the low priority

traffic has an impact on the characteristics of the high priority packets, since the priority scheduling

is Non-preemptive.

Figure 6 shows the mean value of the system contents of class 1 packets as a function of the

total load, when A; = 0.25, uw; = 2 and po = 1,2,4,8,16. This figure shows the influence of the

non-preemptive priority scheduling. When the service time of a class 2 packet is assumed to be

deterministically 1 slot, i-e., u2 = 1, the preemptive priority scheduling has the sameeffect as the non-

preemptive priority scheduling. If uz > 1, the non-preemptive priority has worse performance than

the preemptive priority scheduling in terms of mean system contents for class 1 packets. Furthermore,

for a given value of the lowpriority packet length, the mean high priority system contents increases

linearly to the total load p.

7 Conclusion

in this paper. we analyzed the system contents in a queucing system with non-preemptive HOLpriority

scheduling. A generating-functions-approach was adopted. which led to closed-form expressions of

performance measures, such as mean of system contents and packet delay of both classes, that are

easy to evaluate. The model included possible correlation between the numberofarrivals of the two

classes during a slot and general service times for packets of both classes. Therefore, the results could
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Figure 5: Mean system contents versus the mean service time of class 2 packets

 

 

    
Figure 6: Mean packet delay of class 1 packets when the service time of class 2 packets equals 1, 2, 4,
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be used to analyse performanceof buffers in an IP context.
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