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Abstract

We consider the problem of minimizing the makespan on a single batch processing

machine, in which jobs are not all compatible, i.e. there are at least two jobs that can

not be processed simultaneously in the same batch. The capacity of the batch processing

machine can befinite orinfinite. The processing time of a batchis given by the processing
time of the longest jobs in the batch. We prove NP-hardness of the general problem and
present polynomial algorithms for several special cases.

Keywords

Batch scheduling, batch processing machine, compatibility graph.

 



1 Introduction

The batch scheduling is an extension of other scheduling models that refers to batches ofjobs

to be processed together (material heated together in a furnace, material painted together,

material rolled together, material transported together by an AGV,etc...). In these cases, the

jobs in the same batch have to be compatible (similar physical or chemical properties, forms,

colors, weights, etc... ).

The principal motivation for batch scheduling is the scheduling of burn-in operations in the

semiconductor industry. The final stage in the production of integrated circuits is the burn-in

operation, in which chips are loaded onto boards which are then placed in an oven and exposed

to high temperatures. The purpose of burn-in operations is to subject the chips to thermal

stress for an extended period of time in order to bring out latent defects.

In this paper, we consider the problem of scheduling multiple independent jobs J,,...,J, (n is

the numberofjobs) on a single batch processing machine B1in order to minimize the makespan

Cymoz (final completion time). We suppose that there exists a relation of compatibility between

jobs, where two jobs are said to be compatible if they can be processed simultaneously in the

same batch. This relation is represented by a graph G = (V, £) where is theset of jobs and

any pair of jobs is in E if and only if they are compatible. The capacity of the batch processing

machine can be finite (it can process up to b jobs simultaneously) or infinite (it can process

any numberof jobs simultaneously). Job J; has the processing time p,; and the release date r;.

The processing time of a batch is equal to the maximum processing time of any job assigned

to it. All jobs in a batch must be available and start and finish at the same date. Preemption

is not allowed.

This new combination of batch processing with a compatibility graph defined for the jobs,

appears to be an interesting concept relating scheduling and graph theory.

Thereis no literature discussing batch scheduling problemsof these types. Brucker et al. [8]

have proved that the problem with any processing times, any release dates, 6 = 2 and where

all jobs are compatible (graph G is complete) is NP-hard in the strong sense. In their paper,

the authors do not introduce the notion of compatibility graphs. They have shown that the

equivalent mirror image problem of minimizing the maximum lateness is NP-hard in the strong

sense. Somerelated very special cases, e.g. the IF (incompatible families) structures have

previously been treated [23]. The notion of a compatibility graph is not introduced.

For other optimality criteria see [11, 18, 20, 23] for the IF (incompatible families) structures

and [8, 10, 17, 18] for the CF (compatible families) structures.

This article is organized as follows. In section 2 we give the problem classification and present an

illustrative example. In section 3, problems with general compatibility graphs are considered. In

section 4, we analyze problems with special compatibility graphs. Section 5 is a brief conclusion.
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2 Classification, notations and illustrative example

The usual three-field notation a//- is modified to include batch processing machines. Through-

out this article, the performance criterion y = Coz is used. We set a = Bm to indicate m

parallel batch processing machines. The vector @ is enriched by the following two parameters

B; and f, (which are given at the beginning of the 6 — field): B, € {0,G = (V, E)} where 0

refers to the complete graph and G is a given graph); 9, € {b,b = k,b > n} characterizes the
batch capacity where b means variable capacity, b = k is the constant capacity of size k and

b > n refers to an infinite capacity. Also, for any schedule of jobs on batch processing machines,

let rb; = max {ri} be the release date of batch B;, pb; = max{pi} the processing time of batch
’ J ’ J

B,, db; the starting time of batch B;, Cb; the completion time of batch B;, D; the starting
time of job J; and C; the completion time of job J; (which is equal to Cb; if J; € B;).

Example 1 Let us process 5 jobs J, Jo, J3,J4 and Js on a single batch processing machine.

The processing times are given in table 1.

J, Ji Jo Jp Jag Js
pl ot 3 4 1

Table 1. Example 1

First case: Problem B1/b = 2/Cyaz (all jobs are compatible)
We obtain the following optimal solution:

The numberof batches is equal to 3;

B, = {J,, Jo} ; phy = mar{l,1} =1;

Bz = {J3, J4} 3 pb = mar{3, 4} = 4;

Bz = {Js} 5 pbs = 1;
Coz =6.

The schedule is in figure 1.

 

 
i, Jo Ja, Jq Js

    
0 1 2 3 4 5 6 time

Figure 1: Optimalscheduleoffirst case

Second case: Problem B1/G = (V, E),b = 2/Cmaz
where V = {1,2,3,4,5} and E = {(1,2), (1,3), (2,3), (2, 4), (4,5)} (see figure 2)

Weobtain the following optimalsolution:

The numberof batches is equal to 3;

B, = {J), Js} ; pb) = maz{1,3} = 3;
Bz = {Jo, Ja} 5 php = max{1,4} = 4;

Bs = {Js} ; pbs = 1;
Cmer = 8.

The scheduleis in figure 3.
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Figure 2: The graph G=(V,E)

 

 
Ji, J3 Jo, J4 Js

1,
t +     

0 1 2 3 4 5 6 7 8 time

Figure 3: Optimal schedule of second case

Third case: Problem B1/G = (V, £),6 = 2,r;/Cmaz with the same compatibility graph (figure

2) and the release dates given in table 2.

Shhbhk SI,Is
rT; 0 1 1 5 5

Table 2. Release dates of example 1

Weobtain the following optimalsolution:

The numberof batches is equal to 3;

B, = {Ji}; pb =1 > rb, = 0;

By = {J2, J3} 5 pho = mar{1,3} = 3 ; rby = maz{l,1} =1;

B3 = {Ja, Js} ; pbs = max{4,1} = 4; rbg = maz{5,5} = 5;

Caz = 9.

The schedule is in figure 4.

 

 
Ji Jz, Js Ja, Js

     
0 1 2 3 4 5 6 7 8 9 time

Figure 4: Optimal schedule of third case

It should be noted that the numberof batches is not fixed, but should be determined.

3. General compatibility graphs

The problem Bm/G = (V,E),b = 1/Cwmaz is equivalent to the parallel machine problem

Pm//{Cmaz- Consequently, these batch scheduling problems are NP-hard for m > 2. It re-
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mains the class of single batch machine scheduling problems with 6 > 2. Note that the case

6 = 1 coincides with the classical single machine scheduling problems and does not provide any

new insight.

Theorem 1 /6] The problem B1/G =(V,E),b=k,p; =1/Cmaz with k > 3 is NP-Hard.

Efficient heuristics and exact algorithms based on job orderings are presented, with numerical

results, in (6] to solve the problem B1/G = (V,E),6 = k,p; = 1/Cmer where k = 3,4,..., 00.

Extensions to arbitrary processing times, to solve the problem B1/G = (V, E),b = k/Cmaz

where k = 3,4,...,00, are also discussed.

Let us analyze the batch capacity b = 2.

Let A be the vertex-edge incidence matrix of the graph G = (V, E) where

a. = 1 if the edge 7 is incident to the vertex i

4) 0. if not

fort =1.,.n andj =1...q (q is the numberof edges).

Theorem 2 The problem B1/G = (V,E),b=2/Cmaz reduces to the mazimum weight match-

ing.

Proof. Let c; = mar{p,,,p:,} be the cost of edge j, if the edge 7 is incident to the vertices s;

and t;.

The linear model, corresponding to this problem,is:

. q n q

min Caz = (v €;2;) + xl ~ x QjjZj)P;i= i= =
q

52) <1 fori=l,...,
subject to & O3Fs SS Mort "

z; € {0,1} forj=1,....¢

where

ere 1 if the jobs connected by the edge j are in the same batch
3} 0 if not

q

e 3 ¢jz;: the sum of the batch processing times with two jobs.
i=l

qn

e (1 - ¥ a,;2;)p;: the sum of batch processing times with one job.
1=1 }=1

q

e 30 ajjz; < 1 indicates that each job is, at most, in one batch.
j=l
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We have

n

(S; cjz;3)+ E(- x ajjt;)p, = (Sp)-(F ¥ jjji — x €;2;)
1=1

= (S Di) - (5 x ayPit; o cjZ;)

= (Sp)— L(E ap: —2;
1=1 i 1=1

= (S Pi) ~ D (ps, + Pt; ~ max{Ps,, Ps, })zj
i= j=l

(3 pi) - ze min{pz,, pe, }2;-i=l =

n q

& pi is a constant and greater than }> min{p,,,m,}z;. Then, minimizing Craz is equivalent
i=1 j=l

q
to maximizing }° 1;2; where ; = min{p,,,p1,} if the edge J is incident to the vertices s; anda

3

t;. Hence the linear model reduces to the maximum weight matching problem. Q

The following algorithm solves the problem B1/G = (V, £),6 = 2/Cmmaz-

Algorithm A1;

Begin

1- From the graph G = (V, E), construct a new valued graph H = (V, E) where each edge
in E is valued by min{p;,p;} if the edgeis incident to the vertices i and j.

2- Find a maximum weight matching in the graph H.

3- Form the batches:

efor each set of the matching, process the corresponding two jobs in the same

batch.

e Other jobs are processed as single job batches.

4- Execute the batches in an arbitrary order.

5- The makespan is the sum ofall processing times minus the value of the maximum

weight matching.

End

The maximum numberof possible edges in G is nia) and the best known algorithm for the

maximum weight matching is in O(n?*). Hence, also the algorithm Al runs in O(n?5).

Corollary 1 The problem B1/G = (V,E).b = 2,p; = 1/Cmaz can be reduced to the mazimal

cardinality matching.

Proof. In the above proof, we have min{p,,.:,} = 1. Thus minimizing Cima, is equivalent
q

to maximizing }> z; and the linear model is equivalent to the maximal cardinality matching
3=1

problem. a

The following algorithm solves the problem B1/G = (V, E),6 = 2, pi = 1/Cmaz-
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Algorithm A2;

Begin

1- Find a maximal cardinality matching in the graph G.

2- Form the following batches:

efor each set of the matching, process the corresponding two jobs in the same

batch.

e Other jobs are processed in single job batches.

3- Schedule the batches in an arbitrary order (without idle time).

4- The makespanis the numberof jobs minusthe value of the maximalcardinality match-

ing.

End

Also the algorithm A2 runs in O(n?*).

These problems becomedifficult if one has different release times r;, even if the processing times

are unitary.

Theorem 3 The problem B1/G = (V,E),b = 2,r,,p; = 1/Cmaz ts NP-Hard in the strong

Sense.

Proof. Let OCR be the decision problem corresponding to the scheduling problem under

resource constraints P2/res.11,1r;,p; = 1/Cmaz, defined as follow: given two processors P, and

P,, n jobs Ji,...,Jn with identical processing times equal 1 and release dates ri,...,r, , and

m resources f,,..., Rm (each job J; requires for its execution at most one unit of each of the

resources Ry,..., Ry). Question: Can one schedule jobs J;,...,J, on the processors P, et P,

with a makespanless or equal to z ? OCR is NP-Completein the strong sense [1, 2].

Let R;(i) = { é 7 the job J; requires the resource R;

We prove that OCR reduces polynomially to the corresponding problem OL:jobs are Jj,...,Jn

(the same), pj = 1 fori =1,...,n, 7; fori = 1,...,n (the same release dates), G = (V, £)

where V = {1,...,n} and (7,7) € E if and only if A,(t) + Ae(7) < 1 for k = 1,...,m (ie.

the two jobs J; and J; do not require a same resource), y = z. This reduction is obviously

polynomial.

If OCR has a solution with a makespan less or equal to z, then there exists an allocation of

jobs J,,...,J, on processors P; and P, such that: Cmaz < 2,D; > rj fori = 1,...,n and

R,(Py(t)) + Re( P2(t)) < 1 fort =0,...,2 —land k =1,...,m (where P,(t) indicates the job

allocated to processor P; at timet, if P;(t) = @ then A,(P;(t)) = 0 fork =1,...,m).

Weconstruct a solution for OL as follow (see figure 5): if a job is processed at time ¢ then we

form the batch B, = {P,(t), P2(£)} (the jobs P(t) and P,(t) are compatible because Ay(P,(t))+

Ri( P2(t)) <1 fork =1,...,m).
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Processors

 

  

          

P|... P,(t)

P, Lee P,(t) Lee .. IP (t), P(t)

0 t t+1 z time 0 t t+1 z time

a/ Solution of OCR b/ Corresponding solution of OL

Figure 5: Relation between the solutions of OL and OCR

Then OL has a solution with a makespanless or equal to z.

If OL has a solution with a makespan less or equal to zr, we construct a solution for OCR

as follows: The jobs belonging to the batch B,; and processed at time t, are dispatched on

the two processors P, et P: at time ¢ (see figure 5), then the constraints of release dates are
respected and, also, the resource constraints are respected as the jobs are compatible. We

obtain a solution for OCR with a makespanless or equalto z. O

4 Special compatibility graphs

The problem B1/G = (V, £),b > n,p; = 1/Cmar can be solved in polynomial time if, and only

if, the problem of partitioning the graph G into the minimum numberofcliques is polynomial.

In fact, if s is the minimum numberofcliques, then one has obviously Cyar = 5-

Wegive below list of graphs where this problem is polynomial:

e circular-are graphs [14].

e chordal graphs [13].

© comparability graphs [16].

and the special cases:

e split graphs (the graph and its complementary graph are chordal graphs).

® permutation graphs (the graph and its complementary graph are comparability graphs).

@ interval graphs (the graph is a chordal graph and its complementary graph is a compara-

bility graph).
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In particular the case where G is an interval graph has interesting applications. In [7] an

industrial problem from the sheet metal industry is given.

Let GSK3=(V,E) be a graph containing no complete subgraphs with 3 vertices (a bipartite

graph is a GKS3 graph). For these graphs, the sets in each partitioning contain at most 2

vertices. Then the problem B1/GSK3 = (V, E),6/Cmaz can be solved in polynomial time by

the algorithm Al.

Let assume that one knows already a minimalpartition of the graph into cliques of size 6 or

less. Let B,,..., B, be a feasible minimum partitioning, i.e. | B, |< 6 and s is minimal. Let us

denote this compatibility graph by G(Aj/,..., Aj). Even in this case, the problem turns out to

be difficult in the presence of different release times.

Theorem 4 The problem B1/G(Aj,...,A2),6,7:, pi = 1/Cmaz is NP-hard.

Proof. Let CLIQUE bethe following decision problem:let a graph be given H = (V, E) and

an integer A > 0. Question: Does H contain a clique of size A (a complete subgraph of K

vertices)? This problem is NP-complete [12].

We prove that CLIQUE reduces polynomially to the corresponding problem OL: n = n; + ng

where n, =| V | and nz = (A ~1) | V |, and J = {h,...,5n,} U {Jnyai,---, dn} (To each
vertex i of V we associate a job J; and add (K — 1) | V | jobs). Set

pi =1 fori =1,...,n,

r; = 0 fori=1,...,n1, 7; =1 fort =n, 41,...,n,

b= AK,

G=(YUV, E, U E, U E3) (see figure 6) where,

VY, = {l,...,m}, Ve = {mn +1,...,n},

(i,3) € E, if and only if (i,j) € E (E, = £),
(1,3) € Ey if and only if7 € V2,7 € V2 andi #j

(The subgraph Ay, = (V2, E2) is a cliqueof size n2) and
(i,7) € Ey if and only ifi € Vj and j € We.

y=|VI.

AL,

H

Figure 6: Construction of G

This construction is polynomial.

 



Since n; =| V |, n2 =| V | (A — 1) and Aj, is a complete graph, the graph G has a partition

into | V| cliques of size AK’ (each clique is composed of one vertex of H and WK— 1 vertices of

A’, )- This partition is optimal because the numberof vertices in the graph is equal to A’ | V|.

If CLIQUE has a solution, then there exists a clique of size K in the graph H. One constructs

a solution for OL as follows. Assume, withoutloss of generality, that vertices of H are ordered

as follows V = {1,...,A}U{AK+1,...,] V |} where vertices 1,...,A° form a clique. The
batches are (see figure 7):

By => {J1, eee JK},

B;= {Jx+G-1} U {Jny4(i~2)(K-1)41) sony Jnr elie 1 (Kt) for j = 2,...,.n,; -K +1

B;= {Jus(jn +K-2)K415 eng Jor(j-mek-yK} for j=ny —-A42,...,n

where w =n, + (ny - A)(A —- 1)

with processing times:

Cb, = 1 and

Cb; =7 for j = 2,...,n1.

The batches are processed in non-decreasing order of their indices.

Cmaz = max{Ci} =n =|V i.

 

 

 

          

Bi Ba Bay-K+1 Ba,-K+2 Ba,

Jk Jughk—a1 [eee JK(ny -K41) |JK(-K42) --- Jn

Jo Jaiti wee Ie(y-K)42

J, J+) nee Jn Jk(ny-K+1)41 wee Jkny-K41 time

0 2...n,-h ni-A+1 n,—-A+42...n,-1 nt

Figure 7: Construction of a solution of OL

If OL has a solution with makespan less or equal to n; =| V|, then in each batch there are

exactly A jobs, because the numberofjobsis equal ton, +(A —1)n, = A’n, and the processing

time of any job is equal to 1. As the jobs J; (n, + 1 <7 <n) have a release date equal to 1,

they will be processed between the date 1 and the date n,. The numberof these jobs is equal

to ni(A — 1). Between the date 1 and the date n,, one has to process n, — A’ jobs among the

remaining jobs J; (1 <i <1), because (nj —1)K = 7\(A —1)+(n, — A). Finally, the number
of jobs to be processed between the date 0 and the date 1 is A’ and forms necessarily a clique.

Therefore CLIQUEhas a solution. Oo
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5 Conclusion

In this paper, we have established new complexity results for the problem of minimizing the

makespan on a single batch processing machine, in which jobs are not all compatible. Table 3

summarizes the problem types and their complexity status.

 

 

Problem Complexity

B1/G =(V,E),b=k,p; =1/Cmez (kK > 3) NP-hard
B/G =(V,E£),b = 2/Cmaz O(n?)
B1/G =(V,E),b = 2,p; =1/Cmaz O(n?)
B1/GSK3 = (V, E),6/Cinaz O(n?5)
B/G =(V,E),6 =2,r;,p; = 1/Cmaz NP-hard

B/G = (V,E).6 2 np = 1/Cmaz

for general graphs NP-hard

for circular-arc graphs O(n3)
for chordal graphs O(n?)
for comparability graphs O(n?)

B1/G(K},..., K2),, respi = 1/Cmaz NP-hard

Table 3. Summaryof results
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