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Abstract

Queueing models provide a useful tool in designing manufacturing
systems amongst others. An extensive survey on the subject is given in

a recent review paper of Buzacott and Shanthikumar(1992). However,

these models neglected the due-dates of orders being processed. In

this work, we describe a simple method for modelling such due-date-

based performance measures as tardiness or flow time. Next, we derive

bounds and comparison properties of these measures.
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1 Introduction

Manufacturing environments are naturally characterized as queueing systems

or networks, which provides a useful tool for designing purposes. Buzacott &

Shanthikumar(2, 3] gave an extensive review and bibliography on design is-
sues, using Queueing models,in various types of manufacturing systems such

as flow lines, automatic transfer lines, jobshops, flexible machining systems,

flexible assembly systems and multiple cell systems. The interest of that

paper is to show how thestructural properties recently derived for Queueing

systems can beused effectively in the solution of certain design optimization

problems, while the classical theory of queues is restricted to the derivation

of (explicit or implicit) formulas for the performance measures of interest.

In the case of manufacturing environments, these performance measures

are not necessarily those addressed by classical Queueing Theory. However,

only a few works take into consideration queueing models which incorporate

the due-dates of the orders being processed, and this aspect don’t appear in
the cited above review.

To the best of our knowledge, the notion of lead-time for an "urgency

class” was first introduced by Jackson {11, 12] and many variants were intro-

duced later as ” Earliest start time first protocol” , ” Weighted-delay protocol”

[7, 8, 15, 17]. Seidman & Smith [18], Tate [21] presented some techniques for
modelling due-date in a classical Queueing frameworkandtheir applications

to design optimization problems. .

In this work, we study the comparability of the introduced due-date-based

performance measures in the same framework. For this purpose, comparison

methods andreliability concepts of ”ageing” will play a central role. In the
section 3 we introduce the notion of stochastic ordering and somereliability

concepts of ageing”. In the sections4 and 5 we study the comparability of

the tardiness and the flow time respectively. In section 6, we provide bounds

on these measures.

2 Due-date-based performance measures.

Let us consider a single-server GI/G/1 queue in which ordersarrive at rate 4

and are processed in the orderof their arrival at rate u. Denote by t,, the date

of the nth arrival and 7, his service time, n > 1. Let A(z) = P(&, < 2),
where ( &, = tn —tn-1,to = 0) and B(z) = P(t, < z) be the probabil-
ity distribution of the stationary sequences {£,} and {7,} respectively. We

denote by €, + the corresponding stationary random variables.

Let W,,(z) = P(wn < x) be the probability distribution for the waiting
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time of the nth order, and V,,(z) = P(S, < z) be the probability distribution

for sojourn time of this nth order. The condition y=} = E(t,) < 47 =
JE(€,) insure that there exist steady-state probability distribution for the
waiting time W(r) = limy+oP(wa < x), and the sojourn time V(r) =
limnsoo P(Sp < £). We denote by w and S the corresponding stationary

random variables.

Seidman & Smith [18] and Tate [21] defined the lead-time L,, of the nth
order to be the difference between order’s due-date andits arrival epoch and
A(z) = P(Ln < 2), provided the lead-times of distinct orders are indepen-
dent and identically distributed random variables. The first due-date-based

performance measure of our queueis the tardiness. More precisely, the tar-
diness T,, of the nth order is by definition :

T, = max{0, Sp — Ln} = (Sp — Ln)4;

with probability distribution

P,a(z) = P(TIn< 2), cr >0.

The flow time F;, of the nth orderis defined as the amount of time the order
is in the processing facility

F,, = max{Sy, Ly},

and

®,(r) = P(F, <2), x >0,

since an order may often be shipped until its due-date, which distinguishe it
from the classical sojourn time. .

In the following, we denote by T and F the corresponding stationary

due-date-based performance measures, with respective distributions I(r) =
liMp+soo P(Ty < x) and ®(z) = limpsoo P(Fa < 2).

Seidman & Smith [18] considered the problem of the optimal choice of

lead-time for an arbitrary mixture of convex cost functions involving tardi-

ness penalties, earliness penalties and penalties for quoting long lead-times.

Tate [21] showed how the iterative, numerical optimization algorithm of Sei-

dman & Smith may bereplaced by an analytical solution (in the case of
exponential service time) for a much broader class of composite due-date-

based objectives. They also gave a characterization of the due-date behavior

of G/M/1 queueing systems facing exogenous random lead-times, modelled

as Gammarandom variables.

In the rest of the paper, we give conditions under parametric distribu-

tions (arrivals, service times and lead-times) for which the due-date-based
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performance measures of two queueing models are comparable in the sense

of some defined stochastic orderings. Such results are important since they

yields bounds on due-date-based performance measures understudy. On the

other hand, they gave qualitative estimation of the structural properties for
the optimization criterion introduced in [18, 21].

3 Stochastic orders and Reliability concepts

of ’ageing”

Bythe ageingof a physical or biological system, we mean the phenomenon by
which an older system has a shorter remaining lifetime, in some stochastic

sense, than a newer or younger one. The concept of “ageing” is widely

used in last decade for the quantitative and/or qualitative estimation of the

characteristics asssociated to stochastic models. Manycriteria of ageing have

been developpedin the literature, but we mention only a few of them we need
in what follows. .

First, recall that the random variable X with distribution function F is

smaller than a random variable Y with distribution function G relatively to

the partial ordering ” < ”, if

fear) < ffaac(e), (1)
holdsfor all real functions f € F, where F is a given family of real functions.

We equivalently write X < Y or F < G [1, 19, 20]. If F is the class of all
non-decreasing functions f, then ” < ” is the usual stochastic ordering or

ordering in distribution, denoted by ” <q”. The increasing convex (concave)

ordering ” <icr (<icv)” is obtained when F is the class of all non-decreasing

convex (concave) functions.
Note that the increasing convex (concave) ordering may be defined by

using somereliability concepts of "ageing”. More precisely, X <r Y if and

only if for all real z

E(X-2), = [“(X —t)dF(t) = [“tl — F(t)|dt

[“1 -G@(@)ldt = EY —2)4I
A

provided these expectations (equivalently, integrals) are finite. Interpreting

X and Y as the lifetime of two components, we say that X and Y are

comparable in mean residual life if X <j. Y. Similarly, X <;. Y means
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that X and Y are comparable in mean usedor elapsedlife if E(x — X), >
E(x —Y)+ (all real z) provided these expectations exists.

Note the following properties of the orders” <a”, ” <jeo” and” <icy” :1 —tr

Proposition 1 Let X and Y be two non-negative random variables, and

” <<” be one of the orders” <icr”,” <iey” or” <a”, then

X<Y =>  E(X)<E(Y*) (k>0)

Proof : See Stoyan [20], chap.1, corollary 1.2.2.a. and corollary 1.3.1.a.,

1.4.1.a. (see also Shaked and Shantikumar[19]). :

Proposition 2

(i) X<aY and E(Y,)<w > XSiaeY.

(it) X<SivY  —Y Sicz —X.

(iii) If E(X)=E(Y) , thn X<iwY @& YV<igX.

Proof : See Stoyan [20], chap.1, (i)p.8 ; (ii)p.10 ; (iii)p.11 (see also Shaked
& Shantikumar[19]). ,

Definition 1 We say that a given order” <” on (a subset of) the space D

of distribution functions has the convolution property if, whenever F, < F2

and F,, Fy and G € D, the convolutions F; ®G;,(i = 1,2), defined by
(F; @G;)(z) = [%, Fi(z—y)dG(y) are elements ofD and Fi @G < FL, @G.

Proposition 3 The stochastic order” <q” and the increasing convex order

” Sicz” have the convolution property.

Proof: See Stoyan [20] chap.1, p.5 and p.9 (see also Shaked Shantikumar

[19}).
Let X be a positive random variable with distribution function F' and

denote by X;, a generic random variable with distribution function given by

(z > 0,t > 0)

F(z) = 1-—F(z) = P(X, > X)

= P(X >r+t|X>t) = F(xt+t)/F(t)

assuming F(t) <1 and F(t) =1-—- F(t).
In reliability theory [1], X is interpreted as the lifetime of a component

and F its survival (orreliability) function. Thus, X; is the residual lifetime

of a componentof age ¢.
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1. The distribution F of the non-negative random variable X has an In-

creasing Failure Rate or is an IFR distributionif :

(7) Fy <a Fz, (all 0< 2<y<oo). (2)

The following criteria are equivalent forms of (2):

(iz) [F(t+2) — F(t)]/(1 — F(0)]is non increasing in t for each fixed
z > 0.

(iii) —log{1 — F(¢)] is convex in z.
If F has a density function, then F' is IFR if andonly if the failure

rate or hazard rate \(z) = f(z)/F(z) is non increasing in z.

2. F is IFRA (Increasing Failure Rate Average) if —+ log F(t)is increas-
ingint>0.

3. F is said to be a New Better than Used (NBU)distribution if and
only if — log[F'(t)] is superadditive,ie.if

—log[F(x + y)] = —log{F(x)] — log[F'(y)], 2, y 2 0.
This is equivalent to the statement

Fi <q F( all 0 <t < 00) or P(X > 24+t/X >t) < P(X >2).

The NBU concept maybe interpreted as that a used item of any age

has (stochastically) smaller remaining life than a new item has.

4. The distribution function F of the random variable X is New Better

than Used in Expectation (NBUE)if E(X,) < E(X) (0<t<
co), or equivalently

[” F(a)dz <pF(t). (3)

5. The distribution F is HNBUE (Harmonic New Better than Used
in Expectation)if and only if

L F(x)dz < m7'e~/™ for t>0, (4)

and m = E(X) = fo? F(t)dt.

The HNBUE and HNWUEclassesof distributions are given in {14]. If the
inequalities are reversed, then we speak of Decreasing Failure Rate (DFR),
New Worse than Used (NWU), (NWUE), (HNWUEB)., ...

Note that we have the following chain of implications:

Ezrp> IFR=>IFRA=> NBU => NBUE > HNBUE

 



The interested reader mayfind the details about other distributions of ageing

in the monographs of Barlow Proshan [1] and Stoyan [20]. A more recent
classification based on the notion of s-failure rate is given in Faguioli &
Pellery [6] (see also appendix A and B at the endofthis paper).

Note the important following property of the class of ageing distribution
functions:

Proposition 4 /1, 20]

(i)  F is NBUE(NWUE) = F <icz (2ice) Exp(m™"), (5)

where Exp(.) is standing for the exponential distribution Exp(At) = 1—e-**
(0<t<o)

. . = e—/™ for t<m,
(ii) F is IFR > F(t) > ‘ 0 for t>m.

proof: See Barlow & Proshan [1] (corollary 6.3, p.112) for (ii) and proposi-
tion 1.6.2 of Stoyan [20] for(i).

4 Comparing tardiness distributions.

We return now to our G//G/1 queueing model which incorporate due-dates.

The following theorem gives conditions under parametric distribution func-

tions for which the tardiness of two GI/G/1 queueing systems are compara-
ble.

Theorem 1 Let >), and 3°, be two GI/G/1 queueing in steady-state. i.e.

p; = FE(7;)/TE(&) < 1 (¢=1,2), with parametric probability distributions A;
(interarrival times), B; (service times) and A; (lead-times), i=1,2.

If Aa Siev Ai, Bi <icr Bz and Az Siey At (6)

then Ti Sicr T2 (7)

and JE(T,) < E(T»). (8)

Proof. It is well known [15] that the waiting time w, of the nth customer

satisfies the recursion formula,

Wn+1 = max(0, wa + Un) = (wa t+ Un)4, (n =0,1,...),

where U,, = T, — &. Then, the distribution function W, of w,, satisfies the

integral equation of Lindley

Wast(t) = [” K(t — 2)dW,(z) = / Walt —2)dK(z) (t > 0),
—0o
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where K(t) = P(U, <t) is independent of n, since the sequences {£,} and
{7,} are stationary independent sequences of iid. random variables. On
the other hand, since Ag <jcez A; and By <j., Bo, then by theorem 5.2.1 of

Stoyan [20], we havefor the stationary waiting time distributions W, <jce W2
and for the mean waiting times E(W,) < E(W,).

Bysection 2, the tardiness distribution function is a negative convolution,
and

Pj(z) = P{(Si—Li)+ <r}
_ Io Vilcet+ydAity) s>0 (¢=1,2)
~ {i xz <0 (9)

Since the increasing convex ordering ” <icz ” has the convolution property

- (see proposition 3 §3)], and S; = w; +7; (i=1,2), then it follows that

W Sice Wa, and By Sice Bo => Vi <ice V2.

From this inequality and taking into account formula (9), we have that

Vi Sicz Va; and Az Siev Ar => 1) Sice To,

Thefirst part of theorem 1 is prooved. The second part follows immediately

from the proposition 1 §3.

Remarks.

1. The convex comparability for the stationary waiting time w also holds

for the sequence {w,}. Moreprecisely, if Ky <er Ko, and Wo. <ice

Wo, then for alln = 0,1,...,Waji Sicz Wa. This property is called

the external monotonicity of GI/G/1 [20]. The condition Ky <icr Ke

is sufficient to ensure that W, <i.. Wo, provided the corresponding W,

and W,exists. ,

2. In the case of equal means E(£,) = E(&2), E(L,) = E(L2), we have
that

At Sice Ag Ao Siev At and Ai Siczt Az < Ao Siew At.

Consider now someparticular cases.

4.1 Poisson arrivals.

For M/GI/1 queue,

A,(z) = 1— e7***, we have Az <iey Ar & A1 < 2,

and the assertion of theorem 1 becomes

Ai S42, Bi Sics Bo, Ao Siew Ar => Ty Sie To.
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4.2 Exponential service times.

For GI/M/1 queue, B;(z) = 1 — e“#*,

Ag Sicv Ar, fi > be, Ao Siey Ar = Ti Sice To.

4.3. Exponential lead-times.

If L;(z) = 1-—e?,

Ao Sicv Ar, Bi Siege Bo, USM => Th Sie Te.

5 Comparing Flow timedistributions.

In this section, we prove a comparability result for the flow time, similar to

that of theorem 1.

Theorem 2 Let 5) and X» be twoGI/G/1 queues in steady-state, with para-
metric distributions A;, B; and A; (i=1,2).

(i) If Ky Sa Ko, Bi Sa By and Ay <a Aa, (10)
then ®; <a Do (11)

and E(F\) < E(F2) (12)

(ii) If A2 Siev Ai, By Sics Bg and Ay <icz Ag (13)

then ®, <a By and E(F,) < IEF.) (14)

Proof.

(i) From section 2, it appears that the flow time may be expressed in terms
of the classical measures and the lead-time

F = max(S, L) = max(w +7, L) = V(w,7, L).

By appealing again the theorem 5.2.1 of Stoyan [20], we have

Ky <a Ko => Wi <a Wo.

Since ” <q” has the convolution property (proposition 3 §3) then

W, <a W2 and B, <q By > Vi <a Vo.

The mapping W is non decreasing and convex, and by using the map-

ping method 2.2.2 of Stoyan [20], we have that (11) follows.

 



(ii) The conditions Ap <ieg A and By <icz By are sufficient for Ky <ice Ko,

to holds. The implication : Ay <jer Ag and Ky <iee Ko > 1 <q $2

follows now by applying again the mapping method [20}.

Theorem 3 Assume that A is HNBUE.If (rz) = 1—e~%, for some 6 > 0,
6 # fo°[1 — A(z)jdz, then the sojourn time is exponentially distributed, with
the same distribution of the flow time ®(z).

Proof. The proof is a consequence of a result of Jun Cain [4] who showed
that if a parallel system with HNBUE components has exponential life, it

is essentially a series system with one component. More precisely,

Lemma 1 [Jun Cai (1994)). Let F be the life of a parallel system with
n HNBUE components; and F; be the life distribution of component i,

t=1,...,n. If F is exponential, then there exists somei (1 <i <n) such

that F(t) = F(t), t > 0.

By definition of the flow time (section2), we have that A is HNBUE,and
® is HNBUE,so that , by lemma 1: either 6 = S, either 6 = A. But by

hypothesis, ®@ 4 A, so that, @ = S, which implies that S is exponentially

distributed with same parameter @ as ®.

Remark. Theclass of queueing models for which S belong the class of

exponential distributions is indeed not empty as we will seen in section 6.

6 Bounding due-date-based performance mea-

sures.

In this section, we give an illustration of the preceding result to derive bounds

upon the due-date-based performance measures of our queueing model.

Theorem 4 Let © be a GI/G/1 queue with parametric distributions A(x)
and H(z), then

(i) If H(x) = 1—e7#0-7)) and the lead-time distribution function is
NBUE (NWUE), then for tardiness distribution function

T Siez (2iex)To and E\T) < p/u(1 —7),

where Tg 1s a random variable such that To = 0 with probability 1—p
and Ty is exponentially distributed at rate p(1— 1) with probability

p=v/|v + p(l—r)].

 



(ii) If V (.) and A (.) are both IFR , then

(zx) < ®,(z) for z < min(1/v,m) (15)

where v7} = fo°[1 — A(z)|dz and m = fo°{1 — V(z)|dz and ©,(x) =
(1 — e~*)(1 — e7*).

In particular, if only A is IFR, then (15) holds for GI/M/1 with m =

(1 —r).

Proof.

(i) Indeed, for the GI/M/1 queue, we know a closed-form of sojourn dis-
tribution function [16] ,

0 z <0,

V(z) =
1 — e~HO-1)z z>0,

(16)
where r = )pop byr* and by is defined to be the probability of com-

pleting exactly & orders within a given (continuously busy) interarrival

period [16]. When the orders form a homogeneous Poisson process, then

r = X/p. Whenarrivals are not Poisson, we must resort to numerical

methods to determine the value of r.

Denote by D; our system D with A,(z) = A(z), 4. = v. On the

other hand, let Z_ be a system with the same parametric distribution
functions A, H, and for which Ag(x) = 1—- e~’"(i.e. v2 =v).

Since A, is NBUE then A <j. Ezp(v). But, from the theory of

stochastic ordering (proposition 2(iii) §3 ), the convex and concave
orders are related as follows:

If  E(X)=E(Y), thn X<imY OY <ieX,

In our case : A <jcer Exp (v) <> Exp (v) <iey A > Ao <iev Ai,

By theorem 1, it follows now that [ <,., [,, where [', may be easily

evaluated

VyYeull=r)z
wl—r)+v"T(z) = fo —HIEYe“dy = 1 —

0

or T2(z) =1—p+peO-® , p= v/[v+p(1—1)].

For the convex ordering, we have from proposition 1 §3 that T <..;

Ty) = IE(T) < (To) which yields the second inequality.



(ii) Since the lead-time distribution in & is IFR , then by proposition 4

§3, we have that A(z) > e~”* for t <1/v and V(z) > e~*/™ for t < m.
Hence, the result follows now by (11) of theorem 2 §5.

Theorem 5 Let & be an GI/M/1 queue. If V and A are IFRA (DFRA)
then

1 1
Fy<- - ——.

E(F) s y +™ v+1/m

In particular, if © is an GI/M/1 queue, and only A is IFRA, then (17) holds
with m = 1/v(1—r).

(17)

The proof is a consequense of (14) by using the properties of IFRA distribu-

tion functions (see also Barlow and Proshan [1] corollary 7.7 p.123) :

1E(P) < (>) [a ~(1-e/™)(1 -e™)]at = . +moe

7 Discussions and applications.

The results of section 6 illustrates the comparability method developed in

section 5 for Queuing models which incorporates lead-time as parameter.

They are useful in understanding a complex system with unknown distribu-

tion of performance measures as tardiness or flow time. This approach leads

to bounds on these performance measures based onpartial information about

parametric distributions.

Usually, by way of partial information about parametric distribution, it

is assumed the knowledge about a certain number of moments (often, the

first two moments) [Kimura (1987), White (1986)]. Here, we take another
look by assuming that these distributions belong to some nonparametric

class of distributions. The interest of these distributions is to show a certain

deviation from the exponentiality characterised by some ageing property.

7.1 Relation between exponential and ageing distribu-

tions.

From theclassification diagram 1 (appendix B), we see that the exponential

distribution possess all the ageing properties. However, each class is strictly

larger than each of preceding one in the diagram.

Example 1. The NBUEclass is related to, but contains and is much
larger than the NBU class. A counter example is given in Klefsjo. The
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distribution which put mass of 0,5 at the point « = 1, and mass 0,5 , at
x = 3, is NBUE, but not NBU.

Example 2. The distribution F(t) = 1 — el! is perhaps not frequent in

the nature. Barlow &Proshan (1975) gave an example in which such a dis-
tribution occurs (handling an airplane subject to shocks). This Distribution

is NBU from the inequality [a+] > {a]+[z]. But, it is not IFRA since{t]/t
is not increasing.

Example 3. The distribution F(t) = (1 — e~*)(1 — e~*) describes the
reliability of a system with two exponential components 1 and 2 respectively.

It can be shown that F is IFRA, but the failure rate is increasing until some

fixed value, and then decreases. Thus F is not IFR.

Example 4. Any distribution with strictly increasing failure rate is

IFR but nonexponential. For example, the Raighley distribution F(z) =
1 — erp(—cz?) with linear rate and non null slope.

From these examples, we see that we can find non exponential distribution

in each class of ageing distributions through somefixed ordering. Let F be

a distribution function and E denotes the exponential distribution, then

F is IFR if and only if F <i, E, where <;,, is the increasing convex
ordering.

F is IFRA if and only if F <, £, where <, is the star-shaped ordering.

' Fis NBUif and only if F <,, &, where <,,, is the super-additive ordering.

7.2 Some applications of theorem 4.

Now theresults of theorem 4(i) show that if we have the information that the

service time is exponential and the lead-time is NBUE, then the tardiness of

our unknown system is less (in the increasing convex ordering sense) than an

exponential random variable at rate u(1— 1), where r is defined in section
4. Note that this boundis also valid if the parametric distributions A and B

are such that the sojourn time is NBUE,since in this case this distribution

is bounded(in the increasing convex order sense) by an exponential distribu-

tion. This bound may also be used for arbitrary queues in heavy traffic for

which we can obtain exponential approximation similar to that of Kingman;

see for example Kleinrock (1976). In this case we must replace the parameter
u(1 — r) by the parameter corresponding to the diffusion approximation.

If the parametric distributions A and B are arbitrary, but such that V

is IFR, and if we have additional information that the lead-timeis also IFR,

then the theorem 4(ii) shows that the flow time distribution is less than
®,(x) = (1 — e7*/™)[1 — e~*] for each value x < min(1/v,m). Such a bound
is interesting since it dependsonly on thefirst moments m and 1/v, provided

the mean sojourn time is known.
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lr 0.1 0.2 0.5 0.7 0.8 0.9
1,1

Upper bound 0, 3389 0, 4117 0, 8658 1, 8254 3, 1565 7, 4515
Exact value 0, 2135 0, 2762 0, 6990 1, 6522 2, 9985 7, 3398

1,2

Upper bound 0, 2930 0, 3567 0, 7575 1, 1649 2, 8153 6, 7200
Exact value 0, 1753 0, 2286 0, 5950 1, 4406 2, 6528 6, 6024

1,5

Upper bound 0, 2002 0, 2450 0, 5333 1, 1695 2,0833 5, 1282
Exact value 0, 1024 0, 1368 0, 3851 0, 9965 1,9123 4,9944

1,8

Upper bound 0, 1455 0, 1789 0, 3968 0.8903 1.6149 4.0849
Exact value 0, 0635 0, 0868 0, 2632 0, 7228 1, 4406 3, 9389

2
Upper bound 0, 1207 0, 1488 0, 3333 0, 7575 1, 3888 3, 5714
Exact value 0,0471 0, 0656 0, 2088 0, 5950 1, 2143 3, 4188

5
Upper bound 0, 0222 0, 0277 0, 0666 0, 1666 0, 3333 1, 0000
Exact value 0, 0012 0, 0022 0, 0165 0,0780 0, 2088 0, 8296

10
Upper bound 5,8.10-* 7,3.10-7 18.107? 4,7.107? 0,1 0, 3333
Exact value 6,8.10-5 2,1.10-5 6,7.10-* 8,3.10-? 3,4.10-? 0, 2088

30
Upper bound 6,7.10-7 8,5.10-* 2,1.10-% 5,8.107% 1,2.10-? [°4, 7.107
Exact value 3,4.10-!4 7,8.10778 10-8 6,8.107® 2,0.10-* 8,3.107%

50
Upper bound 2,4.10-7 3.10-* °7,8.10-* 2,1.10-7 7,4.10-7 1,8.10-?
Exact value 3, 1.10722 5,3.10-2° 2, 7.10-28 10-8 2,2.10-* 6,7.1074

100
Upper bound 6,1.10-> 7,7.10-> 1,9.10-* 5,4.10-? [°1,2.10-% [4,7.10-%
Exact value 4,5.10742 1,1.10-3? 1,9.10-74 1,5.10-! 5,1.107!4 2,2.107-6       
 

Table 1: Upper bound on the mean Tardiness time when the service time is
exponential and the lead-time is NBUE (Example 1) (system G/M/1)

Similarly, if the service time is exponential with arbitrary interarrival

distribution such that V is IFRA, and if we have the additional information

that the lead-time is IFRA, then the mean flow time is bounded by (v7! +
m—~(v+m7'))~}, which bound can be easily computed since again it depends
only on the first moments.

To illustrate the effect of nonexponential service, we have also computed a

bound on meantardiness time for a G/E;,/1 queue for which the distribution
of the sojourn time can be evaluated at least numerically, and sometimes

explicitely. Calculation of the distribution of the sojourn time and the bound
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on the mean tardiness time are reported in appendix C’. For lack of space

we haverestricted ourselves to the case of Erlangian distribution of order 2

since in this case, the parameter a; and z, can be evaluated explicitly. For
k > 2 we must resort to numerical methods.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pir-o 0.1 0.2 0.5 0.7 0.8 0.9

11

Upper bound 0, 4507 0, 5403 1,0707 2,1436 3,5630 7, 9804

Exact value 0, 1421 0, 3691 0, 7160 1,8330 3,3251 6,7707

1,2

Upper bound 0, 3934 0, 4728 0,9513 1,9141 3,2031 7,2436

Exact value 0, 1046 0, 1429 0, 5883 1,5868 2,9561 7,0935

1,5

Upper bound 0,2751 0,3328 0,6872 1,4208 2,424 5, 6116
Exact value 0,0317 0,0551 0, 3305 1,0754 2,1308 4, 4267

2

Upper bound 0, 1706 0, 2079 0, 4437 0,8311 1,6651 3,9997

Exact value 1, 1.1073 7,2.10-3 0,1255 0,5883 1,3329 3, 7703

5

Upper bound 0,0334 0,0415 0, 0967 Q,2314 0,4407 1,2295

Exact value 4,1.107® 2,3.10-5 8,3.10-3 0,0131 0,1255 0,8751

10

Upper bound 9.10- 1,3.10-? 2,7.10-? 7.10-? 0, 1425 0, 4437
Exact value ALOE || ceeeeeeee 2,9.10-5 ou... 0, 1255

50

Upper bound 3, 8.10748 [eee ceeeeteee ceeteeee caeesenee teeeeeses
Exact value ceceeeesee, ceseeeeee ceceeetee ceeeeesee ceseenee ceeeeenes         
 

Table 2: Upper bound on the mean Tardiness time when the service time is expo-

nential and the lead-time is IFR with Raighley distribution (Example 4) (system

G/M/1)

8 Numerical Examples.

In this section, we give several illustrations of the preceding results. In our

first numerical examples, we have considered a G/M/1 queue with exponen-

tial service time and NBUElead-timedistribution. In this case, the tardiness

is bounded by an exponential random variable at rate (1 —r). This bound

corresponds to a simpler system with exponential lead-time. Table 1 gives

selected numerical values of the upper bound on mean tardiness time for

different values of r and p = X/(we have fixed A = 1 andlet varying the
service rate jz).
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pir 0.1 . 0.2 0.5 0.7 0.8 0.9
0,1

Upper bound 11,2219 12,5995 20,064 33,3727 50,0266 100, 0134
Exact value 11,0329 12,5846 20,054 33,3665 50,0223 100,0112

0,5

Upper bound 2,6238 2,8712 4,2634 6,8404 10,1218 20,0643
Exact value 2,5809 2,8218 4,2299 6,8161 10,1039 20,0543

1

Upper bound 1,7086 1,8132 2,4298 3,6358 5,2207 10,1218
Exact value 1,6630 1,7671 2,3857 3,5990 5,1912 10,1039

2 .

Upper bound 1,3458 1,3846 1,6282 2,1470 2,8712 5, 2207
Exact value 1,3102 1,3466 1,5833 2,1014 2,8298 5,1912

5 :

Upper bound 1,2022 1,2107 1,2687 1,4090 1,6282 2, 4298

Exact value 1,0198 1,1865 1,2405 1,3698 1,5833 2, 3857
10 .

Upper bound 1.1763 1,1787 1,1959 1,2407 1,3166 1, 6282
Exact value 1,1702 1,1746 1,1821 1,2166 1,2833 1, 5833

30

Upper bound 1,1678 1,1681 1,1702 1,1763 1, 1875 1, 2407
Exact value 1,1668 1,1669 1,1675 1,1702 1,1765 1, 2166

50

Upper bound 1,1670 1,1672 1,1679 1,1702 1,1745 1, 1959
Exact value 1,1667 1,1667 1,1669 1,1675 1,1693 1, 1821

100

Upper bound 1,1667 1,1668 1,1670 1,1675 1,1687 1,1745
Exact value 1,1666 1,1666 1,1666 1,1667 1,1670 1, 1693   

Table 3: Upper bound on the mean Flow time when the service time is exponential

and the lead-time is IFRA (system G/M/1)

For the sake of comparison, we also gives the exact values for a system

with a strictly NBUEdistribution which is not NBU (and not exponential)

(see example 1 of section 7). The upper bound for JE(T) increases for fixed
value of 4 or p. Note that in this case, the mean sojourn timealso increases.

The exact value of the mean tardiness time is more closed to the upper
bound for great values of 4 and r. We have also provided computations

for the distribution of example 4 which is strictly IFR, thus NBUE, but

nonexponential (table 2). The same conclusion have been noted.

In the second numerical example (table 3), we studied the variation of the

upper bound on the mean flow time when the sojourn time and the lead-time

are both IFRA. The numerical comparisons was made with exact values for

a system with the IFRA distribution of example 3 which is not IFR, nor
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pir 0.01 0.1 0.5 1 - 10 100

0,1

Upper bound 2,1.10-* 2.107% 9,89.10~% 1,2.10-7 [88.1077 0, 1342

Exact value 1,1.10-§ 107° 2,21.10-3 1,1.10-3 8,3.10-? 0,1342

0,5

Upper bound 1,5.107? 0,1397 0,5067 0, 7500 1, 2922 1,3804

Exact value 6,1.10-4 0,0442 0, 3903 0, 6800 1,2914 1, 3803

0,8

Upper bound 1074 0, 0921 3,00 3, 5973 4,3608 4,4503

Exact value 4.10-?_ 0,0296 2,88 3,5577 4,3606 4, 4503

0,9

Upper bound 0,8000 4,5899 7,9321 8, 7070 9,5463 9,6362

Exact value 0,2256 4,0060 7,8462 8, 6858 9,5462 9,6362
 

 
Table 4: Variation of the upper bound on the mean Tardiness time when the

service time is Erlangian of order 2 and the lead-time is NBUE (appendix) (system

G/E,/1)

exponential. We note that the upper bound increases when r increases for

fixed yz, and rapidly decreases when p increases for fixed r. For great value

of yz, the upper boundis very closed to the exact values.

Next, we considered a system with arbitrary interarrival time distribution

and k-Elangian service distribution for which the sojourn time distribution

is known (see appendix C). In this case the upper boundis obtained from

formulas (C). In the numerical example, we have shown comparisons with

exact values when the lead-time is 2-Erlang (this distribution is IFR thus

NBUE). In table 4, we study the variation of v and p. The boundincreases

when vy increases and tends to be more closed to the exact values for great

values of v.

Finally, in figures 1-4 we have plotted a family of curves which represents

the bound ®,(z) on flow time distribution as a function of x for different
values of the mean lead-time 1/v, in the case of a system with IFR lead-time

distribution. In figures 1-3, we have fixed the mean lead-time v = 0,25
and we compare the upper bound ®,(z) with the exact value in the case

of an E,/E,/1 queue and IFR lead-time distribution for different values of
= 0,25, p=0,5 and p=0,8. We note that the exact value tends

to be more closed to the upper bound for great value of p. Figure 4 shows

the variation of the upper bound ®,(z) on the flow time distribution when

varying the mean lead-time.
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Figure 1.Upper bound $,(x) on the Flowtime distribution function

when the mean leadtime 1/v=4 for an intensity p=0.5.
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Exact value
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Figure 2.Upper bound $,(x) on the Flowtime distribution function

when the mean leadtime 1/v=4for an intensity p=0.8.
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Figure 3. Upper bound 6,(x) on the flowtime distribution function

when the mean leadtime 1/v=4 for an intensity p=0.25.
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Figure 4. Variation of the upper bound ,(x) on the Flowtime

distribution function versus the mean leadtimev.
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9 Conclusion.

This work has been motivated by the fact that. many practical studies tried

to incorporate due-date in their modelling approaches. The aim of this pa-

per were to show how wecan study the influence of the lead-time and other

parameters upon due-date performance measures by using the theory ofage-

ing distributions and comparability theory. For this purpose, and since this

work don’t intend to an exhaustive investigation of all related aspects, we

have restricted ourselves to the framework of [21] which is quite simple and
straightforward.

Our main results are provided in section 5 where we give conditions under

parametric distribution (interarrival time, service time, lead-time) for which

two such queueing models are comparable from the point of view of some

due date performance measuresas tardiness or flow time. This yields bounds
on these performance measures which are useful in understanding unknown

models by more simpler models for which an evaluation can be made. The
accuracy of the results are provided in selected numerical examples.

Although wehave opted for a simple way of modelling due-date, this study

showsthat the comparability theory and ageing distributions intensively used
in the last decades in Reliability theory, gives an interesting approach in

understanding such models. It seems that this approach can be extended

to other performance measures as Work-in-Processes (WIP) and / or queue
disciplines (priority, breakdowns, retrials, vacations, ...). We hope that the

results of section 5 holds for more strong stochastic orders described in the

literature. For example,it is not difficult to prove that it holds for the convex

orders since the main used properties (lemma1 and 3)arevalid for this order.

It seems that it also holds for the likelihood orders, but the proof seems to

be moredifficult.
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Appendix A. Acronymsfor ageing distributions.

 

  

IFR Increasing Failure Rate

SIFR Stochastically IFR

IFRA Increasing Failure Rate Average

DMRL Decreasing Mean Residual Life

NBU New Better than Used

NBUCX New Better than Used in Convex Ordering

NBUCV New Better than Used in Concave Ordering

SNBU Stochastically New Better than Used
NBU-t New Better than Usedof age ty

NBUE New Better than Used in Expectation

HNBUE Harmonically New Better than Used in Expectation

NBUFR New Better than Used in Failure Rate

NBUFRA New Better than Used in Failure Rate Average

NBAFR New Better than Average Failure Rate (the same as NBUFRA)
BMRL-t) Better Mean Residual Life at to.

DVRL Decreasing Variance of Residual Life

NDVRL Net DVRL

DPRL-a Decreasing 100% percentile Residual Life

NBUP-a@ New Better than Used with Respect to the 100% percentile

ILR Increasing in Likelihood Rate

THR Increasing in Hazard Rate (the same as IFR)
DMRLHA| Decreasing Mean Residual Life in Hazard Average
 

 

 



Appendix B.Classification of ageing distributions.
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Appendix C. Sojourn timedistribution in G/E,/1 queue.
From the general queueing theory, it is well known that for the G/E;/1

queue, the waiting time distribution is given by the formula

k

W(z) =1-—S¢ AyeHO

 

 

i=1

where k
A _ 2; / ay

1- 2% j=] 1- Xi

k 2
a= II

i=l; a aj

The quantity z,,..., 2% are solutions in the disk |z| < 1 of the equation

z* = F(z)

where

F(z) = [* enHull)A(y)
For the sake ofillustrations we considered the case of 2-Erlang distributions

B(x) =1—- (1+ pr)e*

A(z) =1—(1+Az)e*

A(z) =1-(1+vz)e"”*

Thesolutions of the equation (C.1) are 1, p, 1tptvA where A = 1+p?+6p >

0. We retain only the solutions z, = p and 2=a= Leva which are in

the disk |z| < 1.

  

Thus
2

Wy) =1- P(L=2)na-py _

"(1

=

p)

|-na-ayy

p-a a-p
Wethus obtain the sojourn time distribution

V(y) =1— LOMeHow _ LTP -utt-ay
p-a a-p

From formula (9), we can found the tardiness distribution

1- ~p(1-p)z 1- -nu(l-a)z
I(z)=1-v? c— 2-7 Pf 

p-alv+ul—pP  a—py+n—a)P
and the exact value of mean tardiness timeis thus

_ 1 l-a _ l-p

~ w(p—a@)'(1—p)ly+ul—p)P  (l-a)[y + u(1 - a)?
 oi
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