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Abstract: A new algorithm for solving mized integer linear fractional

programming problem which maximizes a linear fractional objective function
under the constraint of some linear inequalities is developed in the present pa-

per . After obtaining an optimal solution of the continuous fractional problem
whatever the feasible region 1s, we are able to construct an improved branch

and bound method based on computation of penalties for solving the mized in-
teger linear fractional problem in a finite number of iterations. An illustrative

numerical erample 1s included.
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1 Introduction

Linear fractional programming problems have applications in various field such as the
cutting stock problem [7], the travelling salesman problem, Markovian replacement. prob-

lems [10] and portfolio theory [21]. For more applications of fractional programming see
Stancu-Minasian’s book [17].

It has been treated by several authors (e.g. Abbas and Moulai [1], Bazara and Shetty
{2], Cambini and Martein [4], Charnes and Cooper [6], Granot [8], Martos [11], Seshan
and Tikekar [14], Stancu-Minasian ([15],[16]} and Williams(20}).

Charnes-Cooper [6] and Martos [11] developed methods for solving the continuous
problem. Cambini and Martein [4] modified the Martos’ approach [11] to deal with
unboundedfeasibility region.

Chandra and Chandramohan[5] developed a method based on Charnes and Cooper
transformation to solve the mixed integer linear fractional programming problem using a
branch and bound technique.

Seshan and Tikekar [14] suggested two algorithms based on a parametric approach
and Bitran-Novaes[3] idea to solve integer linear fractional programming problems. Abbas

and Moulai [1], however, solve the same problem by branch and boundtechnique.

The method that we are going to present maintain the original format of the problem
without any transformation and can be considered as an alternative method to Granot

{8} and Seshan and Tikekar [14] algorithmsfor any feasible region.

The present paper is organized as follows : in Section 2, we introduce the necessary

definitions and notation. Section 3 describes our methodology that can be used to solve
mixed integer linear fractional programming problems. A numerical example is presented
to illustrate the proposed method.

2 Notations

Let S the set of vectors r € RA" satisfving the constraints x > 0 and Az < b where A isa
real m x n matrix and 6} a vector of R™. Let p, q vectors of R" and a, 8 two elements of

Rand L is a subset of {1, 2, ..., n}.

The mixedintegerlinear fractional programming problem (P) intended to be studied

can be mathematicallystated as:

a prt+a
M Z(r) = 1aximize Z(z) gr+B (1) 

Subject to

res
x; integers, 7 € L
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we assumethat the denominator q'x+ @ is non negative over S. The relaxed problem
(P,) is the problem (?) without integer constraints.

In the following section, we present the methodin detail with a convergence theorem.

and a numericalillustration.

3 The Mixed Integer Linear Fractional Programs

In this section, a branch and bound algorithm for solving mixed integer linear fractional

programs (P) is presented. The algorithm is based on Cambini and Martein’s method for
solving continuous fractional programs. Theoriginal format of the objective fractional

function and original structure of the constraints are maintained and the iterations are

carried out in an augmented simplex tableau which includes m+3 rows. The first m

rows correspond to the original constraints, the m+1 and m+2 rows corresponds to the

numerator and the denominator of the objective fractional function, respectively, and the

last row correspond to the 7;’s where

W=BxP, -Exy, jeln (2)

where I, is the index set of the non-basic variables.

In everyiteration of the algorithm, the first m+2 rows are modified as usual through

the pivot operations, whereas the last row is modified via the 7,’s formula.

The non-basic variable which must enter to the basis is indicated bv the index k such

that

2 = max {Ej € Iuig > 0} (3)
Qk F

The solution of the continuous fractional problem obtained in a finite sequence of

basic optimal level solutions (e.g.. [4]) is optimal if and only if 7< 0 for all j € Jy.

Otherwise. there exists an index k for which 7,> 0. If the components of the column

vector associated to index k are negative, then the maximumof problein (P;) is not

attained but its supremum is given by:

De
sup Z(z) = = (4)
res a

This is briefly the Cambini and Martein's method for solving continnous fractional

problem which is used at the beginning of the proposed branch and bound procednre.
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3.1 Methodology for solving MILFP

By using the Charnes and Cooper transformation, several authors (e.g. [5], [8], [14])
develop methods for solving the problem (P) assuming always that the feasible region is

bounded. If is not the case, they maintain the original format for the objective function

and constraints but they use others optimization methods as cutting plane techniques

[8) for a bounded feasible region too. The difference between their procedures and the
algorithm that we are going to describe is the fact that we solve (P) by maintaining

the original format of the problem whatever the feasible region is, using computation of

penalties which improve considerably the branch and boundtechnique.

Consider the problem (P,) by introducingslack variables and solving it by the Cam-

bini and Martein's method to find an optimalcontinuoussolution. Let the optimal simplex
tableau be given by (Pj):

a+ > P; zj

Maximize Z(x) = ——<*—_ (8)
B + > 9; z;

JéIn

Subject to

mt Y ajyzjp=ej, te lg (6)
JIN

zr,20, jg€In

where Jis the index set of the non-basic variables, Ti,t€ Ig is the basic variable, @

and 3 are the reduced costs in the simplex tableau and @/{ is the value of the objective

function. The optimal basic solution of problem (P}) is given by:

z,=6,1E lp

otherwise 2;=0, jg Ely

If e; is integer for every 1 € LM J/g , then the required solution to problem (P)} is

obtained.

If the necessary integrality restrictions are not satisfied, let e,; be non integer value

of xg, for some kt € LA Ig. We denote the largest integer less than eg: bv [ex] aud the

smallest integer greater than ex, by [eg;| . Since Zs is required to be integer. either ru, <

lexe] Or Tey 2 [exel.

Let us consider the former ay; < [eg:| which gives rise to the constraint 24, + 5 =

iexe| but cee + 3D Gee, 2) = xe from the simplex tableau. Then
jein

— XY ay rt, +5 = lens) — exe.
j€In
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Thus we have

- > One5 ZT; < Lene | — €xet (7)

j€In

It is obvious that |exe} — exe is megative and the optimal solution to problem (P)
given below does not satisfy the constraint (7). Augmenting this constraint to problem
(P), we obtain one of the branches.

Similarly, corresponding to rx, > [ex,], we obtain the constraint:

—-Ipnts=- fexe].

Then

> Ope Zi < Cee — eer] < 0. (8)

j€In

Introducing this constraint to problem (P?), we obtain the other branch. This, to-
gether with the rules for the selection of branching variables completely describes the

branching strategy of the method.

3.2 Computation of Penalties

After having obtained the optimal continuous solution of (P,), the associated objective

fractional function in the optimal simplex tableau is given by equation (5).

Let e,, be a non integer value of z,, for some kt € LMTJg. For selecting a new

branch which must be added to problem (P), we compute the penalties 7, and 7, of the

constraints Ty < [ex] and rye > fess], respectively, given by:

 

 

 

1, == (9)
~ > €.
B(B+=—

( icy)

and 1 A

Ty =EEN (10)
~ —e). Uy
B (8 -———)

Oger!

where -

4, = min|{ 73) aig5> o} (11)
— Ont;

. 4% ,-
Ay = min ——/ g;< 0 (12)

Qk;

and

e = ex — [exe]. (13)

The branch corresponding to the smallest penalty is augmented to problem (P')

which is solved by the following algorithm. This is much important for skipping many

non promising branches and gaining considerable computing time.
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3.3. The Algorithm

Step 1. Find an optimal continuoussolution z° of problem (P,)

1. If a such solution does not exist, stop. Either

sup Z(z) = +00
zes

when the basic optimallevel solution of (P,) does not exist or

sup Z(z) = max 2
zeS 4 >0 g;

when a pivot operation is not possible.

2. Otherwise, set k = 1,1 = 0 and goto step 2.

Step 2.

1. If xo is integer for all 7 € LO Ig, stop. x° is an optimal solution of (P).

2. Otherwise, let x, be, for some At € LM Ig, a non integer component of

z° with corresponding value e,:. Set 7 = 0 and go to step 3.

Compute 7-1; and W,. Let mo,2) = Toe-1 +, Tok = Tor + ™ and

T= +00.

Compute

™ = min {7;}.
c= min{73}

* Augment the constraint to the optimal simplex tableau, solve it and go to

step 4.

Step 4.

Let x! an optimal solution of the augmented problem.

1. If x is integer for all 7 € LOI, stop. z! is the optimal solution of problem

(P).
2. Otherwise,

(a) The augmented problem has no solutions, stop.

(b) Let xi, be a non integer componentof x! kt € LAT, with correspond-
ing value ej. Set k = k +1 and go tostep 3.

Theorem 1 The branch selected with the smallest penalty given by

m= min{7}

corresponds to the optimal valueof the objective function for the all pendant vertices j of

the rooted tree.
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Proof

At the kiteration, we are on the vertex s, of the rooted tree with

B= max {2,} = Zoe — min {n5},1<j<2k-2 1<j<2k-2

where Zopt is the optimalvalue of the objective function for the relaxed problem (P,) and

{73}7 = min
1<j<2k-2

is the smallest decrease of Zovt on all pendant vertices 7 of the rooted tree.

Assume that the solution z, is not integer, we must choose a branch for solving the

augmented problem. For this, we compute the penalties 74, and 74,_, on the vertex s,

for selecting the branch and we obtain Zax = Zz, — T™, and Zok-1 =2Z,- 7,1. Thus

Zon = Zopt — 1 — 7, and Zox-\ = Zopt — 1 ~ Th,_, and we obtain : Log = Zopt — 72, and

Zon = Zopt —4-1. Now, the problem is to choose the greatest value of the objective

function on all pendant vertices of the rooted tree :

lt max { max {Z;} Zan, Zax}eye {2} 1<j<2k-2

= max {Z1, Zon—1, Zoe}

= max {Zon —T™, Zot — T2k-1, Zopt _ Tx}

= Zopt + max {—m, —T%-1, —Ta}

= Lop — min {m, 7-1, Ta}

=> Zopt ~ min { min {1;} 24-15 Ta}
1<j<2k-2

Thus _ .

yee {Z;} = Zopt - 1epe2k {7} (14)

Then, it easy to see now that the branch whose penalty is the smallest, gives the

greatest value of the objective function on all pendant vertices of the rooted tree. @

Theorem 2 The optimal solution of problem (P) is obtained by the branch and bound

algorithm in a finite number of iterations.

Proof

Let x! = (2). i € Ig , the optimal continuous solution of problem (P,) and let zr},
a non integer component of z' for some kt € LM Ig. Since the feasible solution of

(P) is required to be integer, we implicitly impose either zi, < lea] or rk, > Peer] to

corresponding solution to problem (P). Then the newbranch is constructed by addition

of one of the above. Therefore, the convergence of the algorithm in a finite numberof

iterations is assured by the boundedness of S. If S is not bounded. the maximumof the

objective function is not attained but we can compute the supremum given by equation

(4) of the objective function(if it exists) by solving the relaxed problem (P,). @
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4 An illustrative example

Consider the mixed integer linear fractional problem (P) given by:

32) _ 222 + 23
Maximize Z =

arcumnize 22, + 3r2+1
subject to

62, - 4r2 + 823 < 15,

221 + 22 - 223 < 7,

22, + 272+ 23 < 9,

21, 22,23 > 0 and 11,22 integers

Wesolve the relaxed problem (P|). The optimal simplex tableau is presented as:

Maximize 2 = ¢—373x, + 7/3a3 — 1/34
subject to

XZ, — 2/329 + 4/323 +: 1/624 = 5/2,
5+ 7/322 _ 14/323 _ 1/324 = 2,

Io + 10/322 _- 5/323 _ 1/324 = 4,

z; 20,7 =1,2,...,6

The optimal continuoussolution is z; = 5/2, 5 = 2, rg = 4 and z; = 0 otherwise.

Since L = {1,2}, Ip = {1,5,6} then LMJ, = {1}. the solution 2, = 5/2 is not feasible
to problem (P). Then, we compute the penalties 7, and m2 of the added constraints x, <

[5/2] and xz, > [5/2], respectively, and we find 7, = 1/20 and 72 = 65/148. weselect

the branch whose the penalty is the smallest and augment the respective constraint to

problem (P{).

The obtained solution is z,; = 2, z5 = 3, 7 = 5, zy = 3 and z, = 0 otherwise.

Therefore, L Ig = {1} and 2, = 2, z2 = 0 is an optimalfeasible solution to problem

(P) with the value of Z equal to 6/5.

5 Conclusion

In this paper, we have proposed an algorithm for solving a mixed integer linear fractional

program which can be viewed as an alternative to methods proposed by Granot based

on cutting plane techniques. Seshan and Tikekar’s based on parametric approaches and

Chandra and Chandramohan’s based on a branch and bound technique via Charnes and

Coopertransformation.
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