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Abstract

This paper presents some aspects of delivery routes organization in com-

panies. It also explains why metaheuristics can be very useful for dispatching

computerization. Two main metaheuristics are presented : Tabu Search and

Simulated Annealing. We briefly present the way simple metaheuristics can be

adapted to “solve” real problems, which are remote from standardized ones such

as T.S.P. The approachis illustrated by its application to a case with time win-

dows constraints.
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1. Introduction !

There are many algorithms aimedat solving standardized problems (T.S.P., V.R.P.,...) related to

the organization of delivery routes (dispatching). More precisely, the purpose of these methodsis

to map out a route for the vehicles (and principally road vehicles) that go and deliver the goods of

the companyto the different shops or clients : which vehicle should we send ? at what time ?

to which places ? in which order ? from which warehouse? ...

These algorithms range from very simple ones (based more on a philosophy,a logical process, than

on mathematics) to very elaborate ones (based on the most advanced mathematical developments).

Yet, they can only rarely be applied in practice.

If one of these algorithms matched exactly the practical case which has to be solved, our advice

would be to use the mostefficient one, and therefore the most elaborate one, as far as mathematics

is concerned.

On the contrary, andit’s the most commoncase,if the situation is peculiar enough for no existing

algorithm being able to solve it, we'd find it better to forget mathematical specificities of the

algorithms andto base ourself only on the underlying philosophy of these algorithms.

The existing algorithms, even if they are very elaborate, are then only “guides” for solving most

problemsthat occurin practice.

Moreover, in the three Belgian companies of which we studied the dispatching organization -

Delhaize, Fina and Texaco- no routing software (that is a software used to plan delivery routes, on

the basis of constraints, objectives and data of the company) wasused ; Delhaize only had decided

to buy such a software.

Therefore, we must conclude, without making generalizations, that these three companies consider

that existing theoretical solutions are partly or totally incompatible with reality and that they prefer

relying on logic, memory. willingness and experience of their dispatchers.

The relative incompatibility between theory and practice is certainly the main reason for which

dispatching algorithmsare little used. Another reason can be foundin the fact that these algorithms

are awfully time-consuming and it has been only a few years since computers - which are here the

essential link between theory and practice - can offer a computing speed whichis sufficient for

solving large problems (with many constraints, delivery points....).

Nevertheless, the incompatibility between practice and theory - and then the software usingit - is

not absolute ; it comes partly from a wrong wayof considering the dispatching computerization.

Indeed, the output of routing softwares is often emphasized as being a final result instead of a

"gross" result which has to be improved on later, according to several factors (e.g. human factors

which can hardly be quantified).

Based on (15). (16) and (23),
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When organizing the dispatching in the usual way, that is manually, dispatcherstry first to create

routes by grouping delivery points (shops,clients,...), according to their location (while already

trying to satisfy most of the constraints) ; the routes which have been obtained are then modified in

an attemptto satisfy all the constraints, without disturbing too much whathasjust been done.

If routing softwares can’t replace dispatchers - and will probably never be able to do so as long as

artificial intelligence won't be a reality -, they can make their task easier by making "mistakes"in

their place. Indeed, if we split the task of dispatchers in two steps, firstly the creation of gross

routes, with some violated constraints, and secondly the improvement of these routes, then

dispatching softwares may simplify and even eliminate the first stage. On this point, routing

softwares can thusbe of realinterest.

Moreover, when we know that in some oil companies, for example, the average global cost of

transportation with one’s ownfleet is about 70 Bef/km,it's obvious that software developmentis

very important, if these softwares could make every route a few kilometers shorter ; so it would be

possible to cut down on time, energy and money neededfor delivering the products.

If using routing software doesn't make it possible to spare money by reducing the numberof

kilometers, it enables the companyto take more systematically into account someof its constraints

or objectives. Therefore the company will benefit from it, for example in terms of

customers’satisfaction. This will also make the company more competitive.

Finally, our transportation study of Delhaize reveals that some companies could have profit in

routing softwares for other specific purposes (for "control" purposes, as far as Delhaize is

concerned).

As wecansee, there is many a reason whyresearch in routing algorithmsis so active.

2. Metaheuristics 2

It is clear from what has just been said that algorithms aiming at "solving" dispatching problems

can be of some interest. provided these algorithms are flexible enough and are considered only as

tools.

Besides usual algorithms - exact or heuristic ones -, metaheuristic solutions are getting more and

more used. These are more “solving philosophies” than genuine “solving methods" (algorithms).

They have in common with heuristics the fact that the optimality of the solution obtained is

sacrificed for the benefit of computing time ; yet, they are different from usual heuristic methodsas

they can apply to a large range of problems, simply by adapting some parameters (called here

“technical choices").

With metaheuristics it becomes possible to “build” algorithms which are as close as possible to the

practical situations we have to modelize ; as a result, algorithms can easily be modified to meet

new requirements which could appear in practice.

2 Based on (20) and (71).
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Among existing metaheuristics, we have chosen two of them, which are probably the most

commonly used : "tabu search” and “simulated annealing". Before presenting these metaheuristics,

we'll remind the reader - very briefly - what the "steepest descentstrategy" is, on which these two

metaheuristics are based.

3. Steepest descentstrategy 3

When wewantto find a* € S such that :

f(a") = min f(a)
aée§S

where is finite set, with at least one item (S # ©)

f is an application from S into R

one of the most simple methods we could think of is probably the "steepest descent strategy”. This

method consists in applying explicit enumeration, on an iterative way, on subsets of S. At each

iteration of the “descent strategy", the subset of S that we consider for the explicit enumeration,is

in fact made of items of S close to that obtained as “optimum”for the previousiteration.

So, if at the i!iteration, explicit enumeration determines item aj" as optimum, the (i + 1)th

iteration will consist in finding 441° such that:

f(aiet") = min f(a)
ae V(a;*)

where V(aj;") is the subset mentioned, made of items of S close

to a”.

V(a;") is thus what we call a "neighbourhood" of a;*.

This methodis a local search strategy consisting in exploring 4 neighbourhood whosestructure has

been defined by a function V:

V:a7 Via) where ae S and V(a) c §

We'll assume that a € V(q@).

3 Based on (20), (21) and (24).
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The steepest descent strategy has a natural end : the search stops when the best item found in a

given neighbourhood is not "better" than the item of which we are considering the neighbourhood.

Of course, the algorithm as it has just been presented is only the philosophy of the method; in

orderto use it in a specific case (such as T.S.P.), several technical choices have to be made. These

choices may influence the efficiency of the method considerably and therefore much attention

should be devoted to them.

Whatever the combinatorial optimization (minimization) problem it is applied to, the steepest

descent strategy presents an importantfailure : it can't escape from local minima.

Indeed,let's assumethat at the endofaniteration we have obtained a* suchthat:

f(a") < f(a) Vae Vio")

but that o* is not the global minimum,thatis :

3a**e § such that f(a**) < f(a")

The steepest descent strategy can't escape from a”, whichis then the final result of the algorithm.

The steepest descent strategy thus belongs to the category of methods progressing monotonously

from an admissible solution ; the common feature of these methodsis indeed that they can be

blocked by meeting a local minimum.

In order to improve the steepest descent strategy, we should see to it that it could escape from an

item a” different from the global minimum butsuchthat:

f(a") < f(a) Vae Via")

That's here that both metaheuristics “tabu search" and "simulated annealing” come into play by

makingit possible, each on its own way, to elude such situation.

4. Tabu search +

The “tabu search" method, initially devised in 1977, was developed at the same time by

F. Glover (1986), P. Hansen and B. Jaumard. Relatively close to the fundamental principles of

artificial intelligence (training theory,...), this method memorizes the way followed for the search,

to avoid considering solutions which would already have been evaluated.

If we simplify as muchas possible, the "tabu" metaheuristic is a kind of improved steepest descent

strategy. By means of “tabu search” the search can go beyondthefirst local minimum encountered.

4 Based on (3), (20) (21. (221,027) and (28).
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The principle of "tabu search"is simple :

The steepest descentstrategystill selects, at iteration #i, the "best" item aj” from V(a;) -

where Oj = O).1* -, which will be used as oj4; at the next iteration. The search stops when at

iteration #j the best item a," of V(q)) is not “better” than a).

"Tabu search" will follow exactly the same process but will not stop at iteration #j (where

the best item a" found in V(q)) is not "better" than Qj). In such a situation, “tabu search”

will choose @;" - in spite of its being worse than the item considered before - in orderto use

it as Qj41 at the nextiteration. When meeting a local minimum, “tabu search” won't thus be

blocked as it will makeit possible to select "worse" solutions (that is solutions for which

evaluation is higher).

Nevertheless, the method as it has just been described wouldn't give good results. Indeed,

since we go back to “worse” solutions, it is possible that at an iteration #} we meet a

solution aj” which has already been used as oj at a previous iteration #i (where i < j).

Therefore, at iteration #(j+1), when we'll seek the "best" item of V(a;"), we'll necessarily

choose the item that had been chosenat iteration #i (except if there are ex-aequos). As a

result, the method would cycle and always repeat the iterations #i, #(i + 1),..., #G - 1), #j. In

practice, such a cycle would appear on very short term after having encounteredthe first

local minimum.

To avoid this cycling, the "tabu search” methodlists all the items the neighbourhood of

which has already been considered. So, whenit has to seek aj". that is the "best" item of

V(q,j), it won't take into consideration items which are classified as "tabu" and which could

initialize cycles if they were chosen.

The “tabu search” philosophy - presented as a flow chart on next page- leads, in its very principles,

to aclearly intuitive method, quite simple to implement.

In its most recent developments, the “tabu search” strategy takes into accountthe historical record

of the search in orderto adaptits process. That gives “tabu”the flexibility considered necessary by

F. Glover for solving combinatorial optimization problems.

Recent implementations of “tabu search" have shown that the performance of this method can be

higher than thatof traditional heuristic methods.

Wesee on the flow chart that we have to keep a record of the best solution encountered during the

search but also that we haveto use a stop condition, based for example on the relative improvement

of the solution during the latest iterations or on the time that has elapsed since the beginning.
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5. Simulated annealing 5

The "tabu search" metaheuristic, that we have just presented, was one of the improvements we

could make to the "steepest descent strategy” so that the search doesn’t stop at the first local

minimum encountered, but continues to search a global minimum. "Simulated annealing" is

another metaheuristic which aimsat the same objective.

The “simulated annealing" metaheuristic results from S. Kirkpatrick, C. D. Jr. Gelatt and

M. P. Vecchi's (1983) and V. Cerny’s (1985) studies. They have applied the algorithm mainly to

the T.S.P. Since then, the method wasapplied in many fields and was subject to many variants and

improvements.

If “tabu search” only came into operation after the steepest descent strategy had encountered the

first local minimum - before that, the simple steepest descent strategy was used - that's not the case

for "simulated annealing". Indeed the "simulated annealing" metaheuristic comes into operation as

soon as the search begins.

"Tabu search” can be considered as a strategy based on "willingness", “consistency” : it consists in

always retaining the best solution which can be found in a neighbourhood, even if this solution is

not as good as the one considered before. The "simulated annealing” metaheuristic is based on a

“random” process, on "change" : in each neighbourhood considered. a solution is retained at

random.

To escape from cycles, “tabu search”lists the last solution considered. "Simulated annealing”relies

on its "random" approach for not considering too many times the same solutions.

After this short comparison between the main two metaheuristics, we could say “tabu search”

follows a “deterministic” approach and “simulated annealing” a “probabilistic” one. This basic

difference will appear very clearly if, for the same problem, we use several times the same

algorithm. Indeed, although “tabu search"(in its basic variants) will always give the sameresults,

“simulated annealing” will alwaysretain different solutions.

The philosophy of “simulated annealing” comes directly from physics and more precisely from

thermodynamics applied to metallurgy. Indeed. as the name indicates, this metaheuristic consists in

simulating the annealing treatment to which metal is submitted. By meansof this treatment, states

which are not in thermal equilibrium - because of prior mechanical or thermal treatments - are

eliminated. Annealing consists in fact in warming up the metal to a high temperature and then

cooling it slowly.

Without going into too many details about the physical annealing, we could simply say that the

slowliness of the cooling enables the metal to reorganizeits structure during its solidification : so,

onceitis solidified the metal has a new structure with minimal energy.

Then the analogy between the physical annealing process and the “simulated annealing”

metaheuristic appears quite clearly.

5 Based on (11). (14), (20). (24, (24) and (25).
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Every solution must be considered as a particular structure of metal. At each structure we can

associate an energy level ; at each solution we can associate - by meansof the evaluation function -

a value which will represent the “energy level” of this solution. The analogy is obvious: if, in the

real process, the structure tends to a minimal energy, we can hopethatin the simulated process the

solution will evoluate in such a waythatits evaluation tends to a minimum.

When temperature is high, that is at the beginning of the process, large modifications of the

structure may occur; therefore, at the beginning of the search, we'll authorizeto go easily from one

solution to another, evenif its energy level is higher (that is : even if its evaluation is worse). On

the contrary, as temperature decreases, solidification intervenes, and structure changes not

producing energy decreases are more unlikely ; as a result, the “simulated annealing” metaheuristic

will gradually reduce its probability of accepting a solution with a higher "energy level”.

“Simulated annealing” consists thus in choosing any solution & from S andin selecting at random,

in a neighbourhood V(q)of this solution, another solution co’. If the evaluation of that new solution

is lower than that of a, it is retained for the next iteration (and we'll considerat the nextiteration

the neighbourhood of @’) ; on the contrary, if a’ is not “better” than a, it could be retained for the

next iteration but only with a probability which decreases during the process. If a’ is not retained

for the nextiteration, that iteration will consist in choosing a new solution at random in V(«).

As for "tabu search” we notice that we must keep a record of the best solution met during the

process but also that we haveto use a stop condition.

The flow chart on next page gives a more precise description of the way “simulated annealing”

operates.

In order to make the chart clear, the probability of accepting a solution awhichis notbetter than

(i.e. f(a’) = f(o)) was simply noted "Ti(e)". This “acceptance probability” depends on several

factors ; those factors are represented by "e". Usually they are two in number. On the one hand,the

acceptance probability is an increasing function of a variable which decreases regularly during the

search ; this variable is generally noted "T" by analogy with decreasing “temperature” in the

metallurgic annealing process. On the other hand, the acceptance probability of a’ is all the lower

as ais "bad" compared to o (i.e. f(a’) is high compared to f(a)).

Thus the acceptance probability is M¢T, Af), with :

— 20 and — <0

In accordance with thermodynamic theory, a function based on Boltzmann'sdistribution is usually

used :

MT, Af) = e 7
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6. The T.S.P. &

One of the most simple dispatching problems to which we could apply “tabu search" and

“simulated annealing” metaheuristics is the T.S.P....

Let's consider n different places 1, ..., n and let's assume a person being in another place (0) must

go one time through each of the remaining n places - 1, ..., n - before coming back to hisstart in 0.

Given the cost of the move from i directly to j (where i, j € (0, ...,n}), the T.S.P. will consist in

finding in which order the person must go through the different places to minimize the global cost

of its route.

More mathematically. the terms of the T.S.P. are the following ones:

If X = (0, ..., n} and G(X,U) is a complete and valuated graph :

d:U>DR:(i,j) 2 dij) = djj  wherei,je {0,..,n} (i¥j)

withdj)j20 Vi,je (0,..,n} (i #j)

the T.S.P. consists in finding a cycle (route) @ = (ig 4) 12 ..  .. in-t in ig) with

{ijlje {0.....m} } = (0, ....n} such that:

x dij = min ( x dij
(i.e a BeS \GijeB

where S = { (ig it ig... ij... in-t ip ig) | Lilie (O...n} }={O.0f f

Applying “tabu search" or "simulated annealing"in solving the T.S.P. is no big deal : we can easily

build an initial solution (that's a simple permutation of vertices), consider the neighbourhood of a

solution and evaluate every solution encountered. Only technical choices require a bit of “feeling”

and experience. As a result, we'll only present here the best route obtained for the problem which

consists in finding the shortest route going through the 44 cities presented on next page, given the

distances between every twocities.

The route which is represented is the best one we obtained after several attempts in applying

“tabu search" and “simulated annealing” (with a total distance of 2111 kilometers).

© Based on (2), (5p, (8). 12C13) and(1 7).
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La Louviére
Leuven
Liege
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7. More concrete problems 7

Although the T.S.P. is probably the most studied problem, it is quite far from daily concerns of

dispatchers. Indeed, in reality, many constraints intervene and make the organization of the

dispatching much more complicated : capacity constraints, schedule constraints,... Moreover, most

of the time, a company has several vehicles at its disposal, and even sometimes several

warehouses.

Here we see clearly how profitable metaheuristics can be. Thanksto their flexibility metaheuristics

are able to solve much more concrete problems, too. Indeed,it's possible to modify the algorithm.

related to the T.S.P. so that specificities of a real dispatching can be taken into account. Moreover,

using metaheuristics makes it possible to maintain a good level of performance provided some

small adaptations of technical parameters are performed.

If we consider the T.S.P. as a reference problem - for which we have an algorithm - we can

distinguish two kinds of dispatching problems:

- Problems which can be transformed into a T.S.P. and which can thus be solved by

methodsrelated to the T.S.P.

We'll qualify these problems as being "T.S.P.-solvable”.

- Problems which are different enough from the T.S.P. to make an adaptation of the

algorithm inevitable.

We'll only say about those problemsthat they are not "T.S.P.-solvable”.

Nevertheless we must point out that "T.S.P.-solvability” is not an absolute characteristic. So, if we

consider two different algorithms A, and Az, built especially for solving the T.S.P., it's possible

that a problem can be solved by A; but not by Ag. Therefore, when we speak about

"T.S.P.-solvability", we should always specify which algorithm weare talking about.

As "T.S.P.-solvable” problems don't require algorithm modifications (given an algorithm for the

T.S.P. of course), we won't pay more attention to them, and we'll only present the way we can

adaptan initial algorithm - here we'll considere.g. the algorithm related to the T.S.P. - forit to take

extra constraints into account.

8. Taking extra constraints into account §

Let's remember what the terms of the T.S.P.are ...

7 Based on (4), (6), (7). (9). 19) and 126).
Based on (10), (13) and (24).

46

 



If X = (0, ..., n} and G(X,U)is a complete and valuated graph:

d:UDR:G,j)) OdG.j) = dij wherei,je (0,..,n}] G#j)

withd);20 Vijje {0,...n} (i#j)

IfS = { (ig is ig... ij... ina in ig) | { ijlje (0,...,n} }=(0,..,0} |

If f is the following function:

f:S2R:B> fB—R= Ff dij
(i,j) € B

Then, the T.S.P. consists in finding a € S such that:

f(a) = min f(B)
pes

Let's consider now a problem derived from the T.S.P. - we'll simply call it d.T.S.P. - and obtained,

Starting with the T.S.P.. by constraining the routes (items of S) to verify several extra constraints

we'll refer to as (*).

T.S.P.
d.7.S.P. = Constraints (*)

We can build S', subset of S made of items of S verifying the (*) constraints. Then, the d.T.S.P.

considered consists in finding a € S' such that:

f(a) = min f(B)
pe S'

As the metaheuristics applied to the T.S.P. consist in finding an item of S$ which gives the smallest

value to f. we'll “only” have here - in orderto solve the d.T.S.P. - to consider items of S' instead of

items of S.

In practice, the modifications will have consequences on

- The choice of an initial solution :

Theinitial solution will not only have to belong to S but also to S’; in other words, solutions

which don't verify (*) must be excluded.

Therefore we'll possibly have to build an algorithm aiming at generating items of S’. If, for

the T.S.P., building an initial solution was no big deal. it's different when new constraints

have been added.
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Whenthe (*) constraints only eliminate from S' few solutions ofS, it is possible to choose

items in S and only Keepthe first one which verifies (*). This approach is often much simpler

but is not possible if many items of S don't belongto S’.

- The choice of a solution in the neighbourhood of another one:

For the steepest descent strategy and for the metaheuristics we presented, we often have to

consider a neighbourhood of a solution and to select a solution in this neighbourhood; that

new solution will now haveto satisfy (*) . It means that we won't consider the neighbour-

hood V anymore but V' where V'=V OS’.

By meansof computers,if (*) only eliminates few elements of S, we may continue to scanall

items of V but only select solutionssatisfying the new constraints.

With this approach we are not obliged to modify deeply the neighbourhood structure

compared to what it was for the T.S.P. We only haveto insert a routine checkingif a specific

route verifies (*) or not, which is often mucheasier.

Onthe contrary, if (*) results in eliminating many itemsofS,it'll be better to examine only

items which satisfy (*), so that the computation time doesn't increase too much.In such a

case, we'll have to build a new neighbourhood structure whichis such that:

Vi: a7 Via) where ae S' et V'(a) c S'

Mathematically considered, this can prove to be much more complicated than checkingif a

specific solution satisfies the (*) constraints or not.

As we can see,if the (*) constraints are strong - we mean that they exclude from S' many items

of S -, we have to modify quite considerably the way the metaheuristics operate ... or computation

time will increase drastically ; those modifications require a good mathematical background about

differences generated by the new constraints. Moreover, technical parameters will have to be more

adapted than forslight modifications of the algorithm.

Therefore, solving the d.T.S.P. with strong constraints instead of the T.S.P. requires a much more
important investment: it is thus in opposition with the philosophy of the metaheuristics.

As a result, we'd like to focus on a possibility to bypass the problem, which can be very useful in

some respects ; it consists in modifying the evaluation function instead of the space of admissible

solutions.

This alternative consists in solving the problem “on” S (instead of “on" S') and in penalizing the

value given by the evaluation function to items of S which don't satisfy the (*) constraints. So, for

our minimization problem. we won't evaluate solutions of S by function f but well by function f*

that we'll define as follows:

f':S>3R:B- f'(B) = f) + wi)
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where w is the penalty function and is such that :

if Be S'
7S R:
wee PB wi) =0 ifpeS'

This way of adapting the algorithm is much more intuitive - and therefore more understandable -

than the previousone ; that's a first advantageofit.

This methodalso presents other advantages:

- It makes it possible to adapt only slightly the metaheuristics, compared to what they were

whentrying to solve the T.S.P.

Moreover, modifications will rarely imply more than simply adding somelittle modules to

the initial algorithm ; each of these modules consisting in computing the penalty (or part of

the penalty) to be appliedto f.

It does not force us to build solutions of S' really, as it works with all solutions of S. This

advantage is very important when building a solution of S' implies the use of a specific

algorithm, which can possibly be NP-hard. In some extreme situations, building an item

of S'can even tum out to be impossible.

It makes it possible for the algorithm to transit through not admissible areas of the space of

solutions to reach admissible areas, which can possibly include better solutions.With the

previous way of adapting the algorithm - way based on the space of solutions - it was not

possible. Therefore. the algorithm could only go from one admissible solution to another by

transiting through admissible solutions. This could slow downthe algorithm in its search for

better solutions.

Nevertheless some difficulties appear when we consider penalizing the function instead of reducing

the space of admissible solutions:

9

 

- As #5 > #S', working "on" S instead of "on" S' can considerably increase the computation

time.

- We must properly choose w because too small a penalty lets the algorithm select not

admissible solutions and too high a penalty cancels the [ast-mentioned advantage.

In a study made in 1991, M. Gendreau, A. Hertz and G. Laporte suggested to adapt the

penalty during the solving process, so that the algorithm doesn't consider too high a

proportion of admissible solutions - we should ceteris paribus reduce the penalty - or, on

the contrary, too low a proportion of admissible solutions - we should then ceteris paribus

increase the penalty.?

Moreover, w must be such that the search is guided efficiently to admissible solutions : with

this aim in view, we'll prefer variable penalties to constant penalties.

(13). 6-8.
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Finally we'd like to mention that this way of adapting the algorithm enablesus, by choosing proper

penalties, to authorize some constraints violations if it's worthwhile ; when the function is

penalized in this way, we talk about “soft constraints". Let's take the example of time windows

constraints : in this case,it'll be possible to use a penalty which increases according to the advance

or the delay compared to the "opening hours” (that's “time windowsboundaries"). This will enable

us to avoid going a long way round for only two minutes delay ; that's very importantasit's not

even possible in practice to foresee the time whichis exactly required for a route.

After having shown how it was possible to take new constraints into consideration in the

algorithms, we'll focus on the modifications needed for solving the m.T.S.P.T.W. This not

"T.S.P.-solvable” variant of the T.S.P. is only an example among manyotherpossibilities, but in

practice it's probably one of the most usual.

9. The m.T.S.P.T.W. 10

The m.T.S.P.T.W.is a problem - derived from the T.S.P. - which considers more than one vehicle

and takes "time windows"into consideration. By "time windows” we meanperiods of time during

which it’s possible to supply the delivery points (shops, clients...) ; out of the "time windows"

assigned toit, a delivery point is considered as not accessible.

There are many possible configurations for "time windows"andthe choice will essentially depend

on the practical situation the algorithm has to "solve". We'll choose here a variant of the

configuration presented by M. Desrochersin (6)!!, but the way we'll introduce modifications to be
applied can easily be transposedto other kinds of “time windows”constraints.

We'll consider here that a “time window"[ojfj] (0j' < fj) - where oj’ could be the opening hour and

fj the closing hour G € {1......n}) - is associated to each delivery point (shop,client....).

To each are (i, j) (where i,j € (0, ..., n} (i #j)) we'll associate the time tj which is necessary for

going from i to j...

PiU SR:)ordy) = tij

where i,j ¢ {0,....n} Gi #j)

We'll note sj Gé {1..... n}) the time which is necessary for the “service” at delivery pointj ; this

“service” is the unloading of goods in a very large sense. sj corresponds thus to the time that every

vehicle must spend in j. We'll agree that so = 0.

Let's assumethat “time windows" and "service" time spans are compatible.thatis :

fj - oj 2 5; Vjefl....n}

10° Based on (6).

Ul 16), 66-67,

50

 



We'll include here the “service” time at stop j (j € (0, ..., n}) in the time needed for going from i

toj (ie (0, ..., n}J\{j}) ; therefore we'll evaluate the time needed for going from to j by tj j instead

of tij:

t:U>R:(.j)) tj) = Gj = tijpt sj

where i,j {0,....n} G#))

If Aj is the arrival time in j and Dj is the time the vehicle leavesj, we'll have to check the following

constraints, which we'll refer to asC :

- We'll consider that there can’t be any delay after the unloading and that the vehicle

departure must occur, at last, when the delivery point closes its doors. This is not restrictive

as we'll authorize a delay before the unloading.

Dj $j (je {1,...,n})

The unloading may only begin after the opening of the delivery point. As the unloadingin j

requires a time sj, we mustsatisfy the following constraint:

Dj-sj20; (je {1,...n})

or Dj 2 0; (je {1,...,0})

where —_0j (with oj = 0j' + sj) is the moment before which the departure can't

take place, given the time sj which is necessaryforthe delivery.

Finally :

oj SD) <fj (je {1,..,.0})

We'll notice that there are no "time windows" constraints for the warehouseasit is assumed

to be opened whenit's necessary.

- The time between the momenta vehicle leaves a point i (i € {0...., m]) and the momentthe

same vehicle leaves the next point in its route (B)- let's call itj Ge (0. .... n}\fi}) - can't be

less than the sum of the time needed for the drive (t'j ;) and of the time needed for the

unloadingin j (s}). As a result, we must have :

Dj- Di 2tijt+s; (ije {0,0} 1G. pe B)

or Dj - Di 22 tij (i.je {0,0} 1G, pe B)

or Di+ tj <Dj (i.je (O..np 1G pe Bd
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As we exclude any “time windows”constraints for the warehouse and the vehicles, Do may

be fixed unrestrainedly. Thus, the constraints may be expressed as:

D,+tj<D; (je (lo. niape B)

Given these constraints, we noticethat:

Aj =Dj+tjj =D, + tj - sj) <Dj- 5;

(je (1,nlape B)

Thus: Aj +s) <Dj (ijée (...np tape B)

As result, we note that the arrival time in j (Aj) is not necessarily equal to (Dj - sj) ; so, we

authorize the vehicle to stay in j longer than it would be strictly necessary for the unloading of

goods. Owing to that, we can consider the case where a vehicle comesin j before oj, i.e. before the

openingtime of the delivery point; in such a case,a delay (0j' - Aj) is imposedto the vehicle.

These terms which authorize a delay are of great interest in practice as they avoid some absurdities

in the results obtained. Indeed, if no delay is authorized, the algorithm is sometimes bound to have

the vehicle go a long way round for the only reason it would otherwise arrive at the delivery point

two minutes before its opening.

After this small "theoretical" presentation of the terms chosen here for the m.T.S.P.T.W., we'll

explain the way the metaheuristic can be modified to take the new constraints into account.

We mustfirst notice that introducing “time windows” limits the numberof delivery points which

can be visited during a single route. As we don't consider here the case of a same vehicle making

several routes - but rather the case of every vehicle making one and only one route - we'll of course

have to consider the existence of several vehicles in 0.

One of the problems which will appear consists in determining how many vehicles we must

foresee. If too many vehicles are foreseen the algorithm won't assign them to a route and,if no

vehicles enough are foreseen. the algorithm won't be able to find an admissible solution. As we can

see, the best would be to choose a numberof vehicles which is sufficient with a 100 % probability.

Nevertheless we must take into consideration the fact that introducing more vehicles involves

increasing the time needed for solving the problem. Therefore we advise to foresee a sufficient

numberof vehicles but without exaggeration.

When,in realsituation, the company ownsa certain number of vehicles we can assumethat this

fleet is reasonable. Therefore, in an operational ortactical framework - in opposition to a strategic

one - we'll choose the numberof vehicles we really have at our disposal.

In order to take into account the existence of k vehicles (k > |) at the warehouse. we'll use a

stratagem which consists in considering that each ofthe k vehiclesis in a different warehouse...

Let's nickname 0.1 the vertex corresponding to the warehouse andlet's name0.i (i = 2. .... k)

the (k - 1) vertices related to the fictitious warehouses. Note that 0.1 is only a nickname and
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that we may refer to the same vertex with 0, when we consider all the real vertices

(warehouse or delivery points), or with 0.1, when we considerall the warehouses (fictitious or

real).

Nevertheless, as all vehicles are located in the same place, we'll consider that thefictitious

warehouses have the same "relations" as the real warehouse ; we mean:

doi j = do.1 j Vie {2,.,k};Vje(l.n}

djoi=djo.t Vie {2Q.u,k}:Vje€l..0}

do.ioj =0 Vie{lwk}sVjeGleowk INCI}

The stratagem consisting in creating fictitious warehouses will then lead usto add (k - 1) rows

and (k - 1) columnsto the matrix relating to the problem. Since the fictitious warehouses have

the same “relations” as the real warehouse, these new rows and columnswill of course be

identical respectively to the row and the columnrelatedto stop 0.

In the solution obtained, each time the route will meet a (real or fictitious) warehouse,it will

have to be considered as the end of the present route (related to one of the vehicles) and

(possibly) the start of the next vehicle, for anotherroute.

To be closerto reality, it's possible to integrate a fixed cost for the use of every extra vehicle.If this

cost is called c, it'll be taken into account by adding it to each dj pj (where p € {1, ..., k},

je {1..... 9}). In other words, we'll add c to each ofthe last n items ofthe first k rows of the value

matrix.

To incorporate the new constraints we've just presented - concerning the m.T.S.P.T.W.- into the

algorithm related to T.S.P., we'll use the function-based approach. So, we'll avoid having to build

an initial solution satisfying the C constraints ; we'll be able to begin with a solution which violates

one or more new constraints.

The objective function used is the following one :

f':S3R:B—> £(B) = £(B) + wp)

where w is the penalty function and is such that :

>0 if B doesn't verify C
w:S3R:8B-> wif)

=0 if B verifies C

Although the matrix to which the algorithm will be applied can be symmetric, it's important to

notice that the problemis not symmetric. Indeed. if B is a route and B' is its symmetric. we may

have w(B) # w(B') and thus f '(B) # f '(B'). The algorithm can't neglect then to consider both B

and f’.
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To checkifa solution B = (igiy ig ... ij... in-1 in ig.) Of S( where ( ij! je {0.....n} } = {0....,n})

verifies C or not, we'll need :

- oj and fj (ie {1,...,n})

-GjCije {1,...n} @4j))

For conveniencesake, the tj ; will be presented as the dj ; in the form of a (n + 1) x (n + 1) matrix

called "time matrix”. The transformation applied to the “distance matrix”, in order to take account

of the fact that there are k vehicles in 0, will also have to be applied to the "time matrix”.

Therefore, we'll finally have'two (n + k) x (n + k) matrices.

Let's repeat that the C constraints are the following ones :

oj $< Dj fj (je (1,..,0}) C 1)

Di + tij Dj (je t...npla pe B) (C 2)

As a result, for the route B € S, we'll have to compute the Dj (i e€ {1....,n} ) related to this route;

this computation will be based on C 2 but we'll try to satisfy C 1 as good as possible. Then we'll

compute w(B) on the basisof the violations of C 1.

Let's consider p € {1....,k} and je {1,...,n} such that (O.p, j) € B.

C 2 doesn't impose any lowerlimit to Dj. Thus, we should fix Dj = 0}.

Let's consider pe {l.....k} andje {1,..., 2} such that (j, 0.p) € B.

C 2 doesn’t impose any upperlimit to Dj. Thus, we'll be able to “push” Dj until Dj = f}.

Let's consider pe {1.....k} andje {1,...,n} such that (0.p, j) e B and Gj, 0.p) € B.

C 2 doesn't impose any (lower or upper) limit to Dj. Thus, we'll fix Dj. at our own

convenience,in (oj. fj].

One of the ways we can check if constraints are satisfied is the following one :

- Forevery je {1,....n} such that

dpe {l,..,k} suchthat (0.p,j) € B

we fix Dj = 0).

- Forevery j € {1....,m} such that

die {1....m} such that {eo eB

Dj has already been computed
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we fix Dj = max (Dj + ti; ; 0; )

We repeatthis step until Dj has been computedfor all je (1, ..., n}.

Practically, this second stage can be linked to the first one : from a vertex which

represents a (real or fictitious) warehouse we examine all vertices in the order in

which they appearin B.

We compute w(B) by checking if Dj € (oj, fi], Vie (1,.., n}.

If we don’t acceptany violation of "opening hours", we'll use for example :

w(B) =0 if Di<fj, Vie (1...)

w(B)=M if Jie {1,....n} | Dj> fj

(where M is such that M>r Wre R to which M is compared)

If we judge that one unit of time delay costs the same amountto the company as an

increase by A of the sum of values of the routes, we'll use for example :

wiB=A. max (D; - fj: 0)
i=1

We may of course imagine many other possibilities for the penalty : penalty with

exponentialincrease...

Neverthelessit's important to choose a kind of penalty which is compatible with the

iogic of the algorithm. For an enumeration algorithm an "all or nothing” penaity can

pertectly be valid ; for metaheuristics - which don'ttry all solutions- it's better to use

a variable penalty, so that the search is guided to solutions which satisfy "time

windows” constraints.

Finally, when a solution has been obtained, we can set up the planning of departures and arrivals as

follows :

Let's consider} € {1,...,n}:

Dj is computed as mentioned above.

if die (1,....n} such that Gi, j)e B:

Aj = Dit+tij
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Otherwise:

Aj = Dj - sj

Let's consider pe {1,...,k}:

Dop = Aj-Copj=0j-Sj-"0pj=oj- pj

where j € {1,...,n} is such that (0.p, j) e B

If we can't find such aj, Do.p can't be computed.

Aop = Dj+tjop= Dj+thap

where j € {1,..., n} is such that G, O.pye B

If we can't find such aj, Ao.p can't be computed.

Werepeat the same process until the entire planning has been set up. As wealready mentionedit,

we mayset up the planning by examining only once thevertices of B, provided that these vertices

are examined in sequenceorder,starting at a vertex representing a warehouse.

As an example, let's consider the continuation of the problem presented for the T.S.P.

As far as "time matrix” is concerned, we'll assume that every vehicle has an average speed

of 60 km/h, that is 1 min/km. As far as "time windows" are concerned, the next page lists the

opening and closing time considered for each delivery point.

Weused the following function for the penalty related to "time windows"violations:

n

w:S>9R:B-> w®B)=4. ¥ max(D- f:0)
i=l

We'll assume that the index i = 0 refers to the warehouse. for every vehicle

considered.

By using such a function. we consider that the cost for the company is the same for one

minute's delay as for 4 extra kilometers. So, we did not definitely forbid violations of time

constraints.

Let's finally mention that we used the minute as time unit, that the “service” time has been fixed

at 15 minutes, for all delivery points, and that we have considered that there were 10 vehicles

available in the warehouse of Mons.

The best result obtained from the 10 tests performed is represented on the map : this solution is

2704 kilometers long and there are no violations of “time windows”constraints. Only 5 out of the

10 vehicles were used.
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Delivery point o' (hours) o (hours) f (hours) o (minutes) f (minutes)

Aalst 8.00 8.15 16.00 495 960

Aalter 9.00 9.15 14.00 $55 840

Amsterdam 7,00 TAS 20.00 435 1200

Antwerpen 7.00 TAS 18.00 435 1080

Arlon 8.00 8.15 16.00 495 960

Ath 9,00 9.15 14.00 555 840

Bastogne 8.00 8.15 16.00 495 960

Bonn 7.00 7.15 20.00 435 1200

Brugge 8.00 8.15 16.00 495 960

Bruxelles 7.00 715 20.00 435 1200

Charleroi 8.00 8.15 16.00 495 960

Clervaux 9.00 9.15 14.00 555 840

Diest 9.00 9.15 14.00 555 840

Dinant 8.00 8.15 16.00 495 960

Echternach 9.00 9.15 14.00 555 840

Genk 9.00 9.15 14.00 555 840

Gent 7.00 7AS 18.00 435 1080

Hasselt 8.00 8.15 16.00 495 960

Herentals 9.00 9.15 14.00 555 840

Huy 9.00 9.15 14.00 555 840

leper 9.00 9.15 14.00 555 840

Kortrijk 8.00 8.15 16.00 495 960

La Louviére 9.00 9.15 14.00 555 840

Leuven 9.00 9.15 14.00 555 840

Liege 7.00 7AS 18.00 435 1080

Lier 9.00 9.15 14.00 555 840

Luxembourg 7.00 715 20.00 435 1200

Marche 8.00 8.15 16,00 495 960

Mechelen 9.00 9.15 14.00 555 840

Mons (warehouse } - - - - -

Namur 7.00 TAS 18.00 435 1080

Oostende 8.00 8.15 16.00 495 960

Oudenaarde 9.00 9.15 14.00 555 840

Paris 7.00 TAS 20.00 435 1200

Philippeville 9.) 9.15 14.00 555 840

Roeselaere 8.00 8.15 16.00 495 960

Sankt Vith 9.00 9.15 14.00 555 840

Sint Niklaas 9.00 9.15 14.00 555 840

Tienen 9.00 9.15 14.00 555 840

Tongeren 8.00 8.15 16.00 495 960

Tournat 8.00 8.15 {6.00 495 960

Turnhout 8.00 8.15 16.00 495 960

Verviers 7.00 TAS 18.00 435 1080

Veurne 9.00 9.15 14.00 555 840
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10. Core-satellites

As we have just seen it, the transformation of the algorithm aiming at solving the T.S.P. to an

algorithm aiming at solving the m.T.S.P.T.W.finally amounts to adding two modules:

- one which modifies the initial matrix to create "fictitious warehouses”;

- another one which, for every solution considered, computes a penalty based on extra

data available. Thereafter, we only have to introduce the penalty in each evaluation.

It is easy to understand that incorporating other specificities than "multiple vehicles” (m.) or “time

windows" (T.W.) will also amountto adding one or more specific modulesto the initial algorithm.

This way, we'll be able to build complex algorithms, by adding to a basic algorithm - called the

"core" - some modules- called "satellites" - by means of which extra specificities of the problem

may be taken into account.

Therefore, this approach - that we could call "core-satellites" approach - combined with

metaheuristics - that can be adapted to solve a large range of problems - enables us to build

algorithms which can be used asefficient tools for the most complex dispatching problemsthat can
occurin reality.

11. Data-processing !”

In organizing distribution routes, theoretical and practical aspects are hardly compatible :

- practical situations require taking many objectives (minimum ofcost, best distribution of

tasks...) and constraints (capacity, schedules,...) into consideration;

- from the theoretical point of view, problems considered are much too standardized and

simplified. Moreover, computation time rapidly becomes excessively long even when

using heuristic methods and computers.

Using metaheuristics and the "core-satellites” approach already remedies a little this relative

incompatibility between theory and practice.

Yet, only data-processing can really make theory and practice closer to each other. Indeed, using

computers enables us to take more constraints and objectives into account in a reasonable time.

Considering existing algorithms makes it clear that only computers enable us to use them.

Nevertheless, data-processing can't replace human beings in organizing delivery routes. Indeed,

even if using metaheuristics and what wecalled the “core-satellites" approach enables us to model

the algorithm on the real situation, it is clear that in reality many reasons makeit difficult to

“systematize” dispatching (by means of computers) :

{2 Based on (1) and (18).
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- In practice, many human, social,... aspects - which can't possibly be mathematized - can

reduce the space of possiblesolutions.

For example, there are often character "incompatibilities" between lorry drivers and shop

managers. Evenif it's not really necessary to take this kind of aspects into account,it's

better to do it, to improverelationships, motivation and thus profitability in the company.

Other examplesare drivers’ preferences, respect of a fair distribution of tasks,...

The “mathematical” respect of some constraints can be injudicious in practice ;

especially when dispatchers maytakeliberties in organizing the routes.

For example, for “time windows”constraints, the computerwill try to satisfy exactly the

constraints imposed by the user. Yet, the solution given by the computer can be not as

good as the one which would have been found by a "human" dispatcher, who can give a

call to the staff of a shop to ask them to be there 10 minutesearlierorlater.

For capacity constraints, a “human”dispatcher can also get a better solution by deciding

that some goods,less urgent than the other ones, will be delivered the day after.

Some specific unforeseen constraints can appearthat the algorithm can't handle. The

company can for example get a peculiar order for goods which require some special

conditions for their transportation.

Solutions given by mathematical algorithms can fail to take into account some

“irrational” standards that human dispatchers could have. In such a situation, even if the

solution obtained is good, it can be refused ; although the algorithmis efficient. it will

thus appear as being inadequate.

The “opposition to change”ofthe different parties concerned by the dispatching can also

play a part in the failure of the computerization.

And so on.

12. Conclusion

As we can see, it would be dangerous to believe that we only have to choose a mathematical

algorithm to solve all dispatching problems. Nevertheless we shouldn't either conclude that the

computerization of company dispatching is always a hazardous task which can only give bad
results. The choice between a manual dispatching and a computerized dispatching must be the

result of a global and quantified thought which takes account of the different aspects of the

company organization.

If we decide to use data-processing, the combination of metaheuristics and the “core-satellites”

approach can be very helpful. Indeed, through their high flexibility. these two approaches put

together makeit possible to solve specific problems which are far from “theoretical” standardized

problemslike T.S.P.. V.R.P.....
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SPECIALISSUE

Applied Location Problems

CALL FOR PAPERS

Just like the decision of where to set up a newfacility is the first crucial ques-

tion on which manyother questions of logistics will critically depend, so do

location problems form field of study taking up a central place in Operations

Research sinceits very beginnings. The simple models of the early period, such

as the Weber model, well known to economists, are being extended in various

ways andlots of new models allow to cope with more and moreof the complexi-

ties the real world forces upon analysts and decision makers.

At the technical level location theory reflects virtually all the fields of math-

ematical modelling, be they linear, nonlinear, integer and/or multi-objective

programming, and makes use,often at the forefront, of the most recent exact

or heuristic techniques. Applications abound, not only for the traditional loca-

tion of plants, distribution centres or public facilities, but also in the design of

production and information systems, robotics- or pattern recognition, etc. As

so often in the field of OR, it turns out that real applications are less well docu-

mented than the theory, a pity for the person in the field or the person in front

of students, and that lots of new theoretical developments are not known

enoughto practitioners.

JORBELplans to try taking a step towards bridging this gap by a special issue

in 1996 dedicated to “Applied Location Problems”. The aim is to bring together

papers introducing our readersto novel trendsin thefield of location, either as

tutorial papers and/or accounts of actual applications, which may range from

short notes of a few pagesof “in thefield” style, or longer descriptions, possibly,

but not mandatorily, including novel modelling aspects. Contributions are

expected to emphasise modelling and/or presentation of applications, rather

than algorithmic and/or theoretical technicalities, although some indications

and/or references towards solution methods should of course be present.

Authorsinterested in contributing to this special issue should express their

intention by sending a short abstract before September 30, 1995. The full text

should be submitted in triplicate camera-ready form before January 1, 1996.
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All contributions will follow the usual refereeing procedure.

Abstracts are to be sent to:

Prof. F.Plastria

INVE - Center for Industrial Location

Vrije Universiteit Brussel

Pleinlaan, 2, B-1050 Brussels, Belgium

Fax: +32 2 629.36.45, E-mail: faplastr@vub.ac.be

Full papers are to be sent to

Prof. J.Leysen

Royal Military Academy

Department of Economics and ManagementScience

Renaissance Ave 30, B-1040 Brussels, Belgium

Fax: +32 2 742.10.52, E-mail: leysen@rma.ac.be

All additional information andin particular prescriptions about the formal

presentation of the contributions can be obtained from Prof. Leysen.
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