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Abstract

The flow-shop studied consists of three machines arranged in series through

which material must pass. Each machine is subject to failure and, to improve

the overall availability of the system, buffer storages are located between each

pair of subsequent machines. Analytical approaches address to the formulation

of a system of balance equations describing the transition of the system state.

The numberof states is quite high. An approximation is formulated in case the

time to failure and time to repair is exponentially distributed. A simulation is

built for this system to evaluate the validity of the approximation.

Keywords: transfer lines, interstage buffers, production availability, unreliable ma-

chines
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1. INTRODUCTION

The problem of designing and improving flow line production systems has received a

great deal of attention in the literature. These production systems consist of a number of

stages (arranged in series) at which operations are performed on a workpiece. Operations

at the stages are performed by machines or by equipment which are subject to failure.

Failures at any stage result in the failure of the entire production system and consequently

the overall production rate is affected.

In order to improve the production rate, basically there are two approaches. One is the

utilization of stand-by machines, the other is to allocate buffer storages between the

stages. The decision howto allocate buffers to a production line is of practical importance

to the industry, especially to those with assembly machines, canning, and packaginglines.

In this note, the problem of determining the availability of a three-machine two-buffer

system is addressed, using an approach which is an extension of the technique by '

MALATHRONASet al. [1983]. They study the problem of the availability of a two-

machine system with one intermediate buffer. A simple approach to determine the optimal

sizes of the two buffers in the three-machine system is also presented assuming rather

general storage conditions.

In the literature on multi-stage lines with finite intermediate buffers, DE KOSTER [1989]

distinguishes four classes. of models. A first class deals with systems in which the service

times are random variables and the products are discrete. The machines are not suscepti-

ble to failure. An example of such a system is studied in KRAEMER and LOVE [1970].

A second class assumes deterministic processing times, but machines are unreliable and

fail from time to time. Products are discrete. Examples can be found in OKAMURA &

YAMASHINA[1977], in SHESKIN [1976] and in SUTALAKSANA & VAN WASSEN-

HOVE[1981,1982]. Mostly life and repair times are geometrically distributed.
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A third class deals with continuous flow models. Machine speeds are deterministic but

machines may fail. This is the class of models this paper will deal with. Some examples

of these models can be found in BUZACOTT & HANIFIN [1978], MURPHY [1975,

1978], FOX & ZERBE [1974], WIINGAARD [1979], MALATHRONASetal. [1983],

COILLARD & PROTH [1984], YERALAN etal. [1986] and MITRA [1988].

A fourth class deals with models with discrete products, failures of machines and random

processing times. This can be found e.g. in BUZACOTT [1972] and in GERSHWIN &

BERMAN [1981].

2. NOTATIONS AND ASSUMPTIONS

The performance of a production system is measured by its availability defined as the

ratio of uptime by total time. In some papers other terminology is used: e.g. BUZACOTT

& HANIFIN [1978] use efficiency defined as the ratio

Ae= lim q(t)/o(t)

where

q(t) = actual production in time ¢

Q(t) = what production in time f would have been with no stoppages,

or the throughput [DE KOSTER,1989, p. 31] defined as

face) dt

lim 2
t~0 t

where g(7) stands for the line output at time 7.

The production lines are assumed to produce at a constant rate and to have unreliable

machines.
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The availability of a single machine can be expressed as:

A(t) = MTTF = up time
MITF + MTTR up time + down time

where MITF

MTTR

mean time to failure of the system

mean time to repair of the system

If both failure and repair times follow the exponential distribution, the availability can be

converted into an expression which is independent of time:

T= — = failure rate

Be— repair rate
MITR —

and

lim A (t) =a= —# 
a) T+

In this model the following assumptions are made:

(a) The system is balanced. All machines work at the samerate.

(b) Machines have twostates, up and down, each with exponential sojourn time. The

up and down times variables are statistically independent.

(c) If two machines havefailed, repair work can be done on both simultaneously.

(d) Failures are state-dependent, i.e. machines cannot break down when blocked or

starved.

(e) The first machine cannot be starved, and the last machine cannot be blocked.
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3. THE TWO-MACHINE SYSTEM ONE-BUFFER SYSTEM

  

 

input \ / output

My Vv by

      

Ty 12 ,

Figure 1. Two-machine configuration

The analytical result for the availability of the two-machine system A , as obtained by

MALATHRONASetal. [1983] is:

(p, - p,e*) AA,A, =
PA, - p,Ae™*

where 1:
Pi=— i= 1,2

Hj

A, = availability of machine i

p= Wet et 1 * 12) (ity ~ Tay)
(H+ Hy) (7% + 72) Cy

V_ = buffer size

Q = production rate of the system

Q
a1 F

the relative rate at which the buffer

is built up or depleted if only

one machine is working -
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4. THE THREE-MACHINE TWO-BUFFER SYSTEM

The system in which three machines are in series can be depicted as in figure 2. The

machines are identified as M, (i=1..3). The buffers B, and B, can have different volumes

V, and V2. The main idea is to replace the subsystem M,-B,-M,. by an equivalent

machine, M,.

   

  

         

My Vi 7) V2 Bs

Ty 72 73

Figure 2: Three-machine two-buffer configuration

Special cases of the three-machine two-buffer system ~

Somespecial cases of the system under study can be observed. DE KOSTER and WIJN-

GAARD [1986] mention the cases in which two machines are unreliable and one machine

is perfect. Consider the three possible cases:

(1) first machine is perfect

The inventory. level in B, will increase montonically until it reaches the level V,. the

system then will behave as a system consisting of machines 2 and 3 only, separated by

the buffer B).

(2) second machineis perfect

The state of the system can be described by: (a) the state of machine 1, (b) the state

‘of machine 3, and (c) u € [0, V,+V,2] being the sum of the inventory levels of ‘both

buffers. Starvation of the third machine is only possible if u = 0. :
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(3) third machine is perfect

If the system starts with an empty buffer V2, it will always remain empty. Otherwise

it will decrease monotonically towards the zero level. The system then behaves as a

system consisting of machine 1, buffer B, and machine 2.

  

 

      

M, B, M;

He V H3

Te 73

Figure 3: Equivalent machine configuration

The proposed approximation for determining the availability consists in utilizing twice

Malathronas’ formula (3). The first step is to replace the subsystem M,-B,-M, by an

equivalent machine, M,. The second step is to analyse the M,-B,-M, system. By applying

Malathronas’ formula a second time, it is possible to determine the availability of the

entire system. The main difficulty in this approach is that the equivalent machine, M,,

should behave as a single machine, i.e. the equivalent time between failures and the

equivalent repair time should follow exponential distributions and should be independent

as well of each other as in time.

A more elaborate view on the distribution of both uptimes and downtimes requires the use

of a test experiment. In a survey by ASCHER [1990] the test for exponentiality proposed

by COX and OAKES [1984] appears to be the best. From simulated results, it appears

that M,’s distributions are at least approximately exponential. Details on the test and the

results can be found in appendices | and 2.

In order to develop a discrete event simulation model for the three-machine two-buffer

system ten events are to be taken into consideration: machine | goes down (A)or goes up

(B), machine 2 goes down (C) or goes up (D), machine 3 goes down (E) or goes up (F),

tank 1 becomes empty (G) or full (H), and tank 2 becomes empty (1) or full (J).

In appendix 3 we enumerate the 32 possible system states. The discrete event simulation

model can be used for calculation of the steady-state probabilities in each of the states.
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4.1. AVAILABILITY OF THE THREE-MACHINE TWO-BUFFER SYSTEM

Similarly as in the two-machine case, the availability of the equivalent machine A, can be

written ‘in terms of 7, and p, as:

(p, -p,e*) A,A, - ,

P\A, - p,A,e™ w+ Tt,

A =
e

(3)

This leaves us with finding analytical expressions for the values of 7, and u,. To calculate
H. , we first define

A, = Prob( M, up & notstarved )

= Prob( M, up ) - Prob( M, up & starved )

A, - Prob( M, up ) * Prob( M,starved )

= A, - A, * Prob( M, starved )

Further we know that

Prob( M, starved ) = 1- A, / A,

Prob( M2 not starved ) = A, / Ay

Prob( M) not starved & down) = (A,/ A,) * (1 - A,)

The equivalent repair rate 4, is the weighted average of the repair rates p,

and py

(1 ey (As) (L A,)-—) * p, + (—) * - A,) * B,
A, A
 

= 2 . 4

BH. aay ee 7 ) (4)

A) AD ( )

The equivalent failure rate 7, can be determinedas:

_(-A) * B, . (5)

cA
e

25

 



4.2. DESIGN AND RESULTS OF A SIMULATION EXPERIMENT

To test the validity of the above results in an empirical way, 24 different cases of two-

machine one-buffer systems are calculated using the equations (4) and (5). The numerical

results are compared with results obtained by simulation (Table 1). Deviations appear to

be very small and within an acceptable range.

The simulation model identifies three entities in the system (Machine 1, Machine 2 and

the Buffer) which can be in one of different states. Both machines can be either up or

down. The buffer can be empty, full or at an intermediate level. This should lead to a

system space with twelve states. Similarly as in the analytical approach by MALATHRO-

NASetal. [1983] we ignore some possible states: (1) the state where M, is down and the

buffer tank is empty, since this case only arises if M, went down at the precise moment

the tank became empty; (2) the state where M, is down and the tank is full for a similar

reason.

This leaves us with the following eight states:

1. Both machines down; tank at intermediate level

2. M, down, Mz,up; tank at intermediate level

3. M, up, M, down; tank at intermediate level

4. M, up, M, up; tank at intermediate level

5. M, down, Mz up ; tank empty (M, shut down)

6. M, up, M, up ; tank empty

7. M, up, M, down; tank full (M, shut down)

8. M, up, Mp up; tank full.

While in general the results of this simplifying approximation is very promising, it is

interesting to investigate why some results are worse than others. This can lead to some

advice or warning for the user of this approximation.
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TABLE 1. Comparison between analytical and simulated results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

CASE MTTF MTTR by FORMULA by SIMULATION

M1 M2 MI M2 UPTIME DOWN- UPTIME DOWN-
Vv TIME TIME

1 20 30 10 20 45 23.14 17.71 22.87 17.73

2 40 30 30 20 25 19.63 30.37 19.49 30.47

3 40 80 40_ 100 40 37.22 67.92 37.22 67.12

4 45 55 30 35 55 36.02 33.28 35.39 33.04

5 35 56 10 10 20 38.04 10.00 37.98 10.06

6 355 60 10 15 25 43.06 13.59 42.85 13.66

7 35 60 15 5 20 33.23 9.46 33.05 9.68

8 35 60 15 15 15 35.56 15.00 35.29 15.14

9 35 60 45 50 35 36.41 48.03 36.04 47.94

10 55 60 80 10 20 30.00 45.00 29.80 46.02

1 55 60 80 10_ 120 30.17 43.23 30.37 43.83

12 35 60 80 10. 200 30.52 44.39 30.31 45.53

13 55 60 80 15 30 30.76 46.68 30.98 46.36

14 60 50 10 20 20 39.33 17,87 39.08 18.11

15 60 35 10 80 20 43.98 65.98 43.79 66.68

16 60 55 10 80_| 120 34.23 78.00 54.64 78.12

17 60 90 70 75 80 48.69 72.71 48.46 72.02

18 60 95 10 12 40 56,82 11.20 56.85 11.27

19 70 80 65 60 50 46.79 62.08 46.99 61.99

20 75 20 10 20 10 18.32 19.16 18.23 19.19

2i 80 60 10 5 40 45.85 6.18 45.64 6.19

22 85 100 20 100 40 72.49 77.99 72.33 78.55

23 90 60 12 10 30 49.28 10.36 48.88 10.44

24 100 50 60 25 45 38.68 32.92 38.29 32.99
 

1. All values are expressed in time units.
2. The length of the simulation runs is 10,000 time units which is sufficient to reach a

reasonably steady state situation.
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A first observation concerns whether the worse of the approximated mean timesis either

the uptime or the downtime period (or both considered equal if the difference is less than

0.1% . If we split the sample in two parts, a comparison between the *best’ performing

and the ’worst’ performing half gives us the following table:

 

 

 

 

WORSE BEST

UPTIME 3 5

EQUAL 0 3

DOWNTIME 9 4     
This assures us that, if problems with the approximation appear, they are mainly due to

the estimation of the mean downtime.

While investigating the cause for this effect, a second observation can be made. Let us

compare the deviation from the exponential distribution (measured in terms of the

variation coefficient) for both uptime and downtime. Averaged over 24 samples the

variation coefficients for uptime and downtime are resp. 0.99 and 1.14. According to this

measure we can conclude that uptimes are nearly exponential, but downtimes are not.

This motivates us to take a closer look at how the variation coefficient can affect the

*worse’ performance of the downtime.

The Cox and Oakestest statistic shows no deviation from exponentiality for the uptime

distribution. Significant deviations appear for the downtime distribution. In all significant

deviations the coefficient of variation is larger than one.

This leads indeed to an indication that a degration of the exponentiality of the empirical

downtime distribution can be a cause of error in the approximation.
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After determining 4, and 7, , the next step is to use formula (3) once again, resulting in

the following expression of overall system availability:

4NALAS 6
t

p’ A, - p, A, e*

t
where, p'! = —

B.
T

P; = 3

By
A, = availability of M,

ki = (b, + By + t, + 73) (THs ~ Th)

(h, + Hy) (t, + 73) ¢,
 

Q
C. =

2 V,

A, = availability of subsystem M, - B, - M,

4.3. OPTIMAL SIZES OF THE BUFFERS |

Optimal buffer sizes are determined in two phases. In a first step a decision is made on

the size of the total buffer. It is assumed that both types of buffers are comparable: they

compete for the same storage space and they incur the same cost per volume unit. In a

second step a decision is made on the partitioning of the total buffer size.

In the proposed procedure the total buffer size T is either determined by a restriction on

the total buffer space or by considering the trade-off between increase in availability and

increase in storage costs. Once T is fixed the proportions of T allocated to the first buffer

and to the second buffer can be determined by maximizing formula (6) in which V, has

been replaced by T-V,. This optimization problem is non-linear in one variable V,, the

size of the first buffer. The optimum can be determined by a one-dimensional grid search.
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If the total buffer size T is not limited by a constraint on storage space, T should be so

large that any further increase of T has no significant effect on the total availability A, of

the system. This value of T is determined by

where c is calculated from

(Profit) * (Production rate) * dA, = (Storage cost) * dT

_ (storage cost)

(profit) * (productionrate)

In practice a series of increasing values of T are considered together with their correspon-

ding optimal availability values A,. For determining the optimal availability, every time a

one-dimensional grid search should be made in order to calculate the optimal partitioning

of T. Increasing values of T correspond with increasing values of A,. However, the

increase of A, becomesinsignificant when AA, < c * A T , and the procedure should be

stopped.

As an example we consider the following system:

7, = 0.03 , 7. = 0.08, 73 = 0.02 ;

wy = 0.1 , wm = 05,4, = 0.15.

The fill rates c, and c, are chosen in such a way that the buffers can be emptied (if full)

or filled (if empty) in a unit of time. This means if the buffer size is 80, the fill rate takes

the value 1/80. Total buffer sizes take values 80, 60, 40, 30 and 20. Figure 4 show the

availability of the total system in function of the first buffer size (holding the total buffer

size constant). If e.g. the total buffer size of 80 has to be divided in a first buffer size of

60 and a second one of 20, the values c, = 1/60 and c, = 1/20 should be used in the

formulae above.
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Figure 4: Availability of the total system in function of buffer assignments

CONCLUSION

The above approach is very simple and is valid unless the basic assumptions are not

satisfied. The same procedure can be repeated to analyze multi-stage systems with more

than three machines. It may be that the exponential properties of the equivalent machines

will deteriorate. However, the approach will probably still provide good approximate

values for availability calculations.

In practice, several adjacent machines can often be grouped together heuristically and

represented by one machine such that the operational characteristics of this single machine

are almost indentical with the real configuration. This possibility certainly enlarges the

applicability of the results obtained for a three-machine system.
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Appendix 1 ; The Cox and Oakes test statistic

Let the observations of a sample of size N have values x; (i=1,2,...,N) and let

N

3

Compute the following variables:

p= 

U = N + Sologe, - NLZHCE:
Yi

Ixn =N+ YO @ x) flog @ x)?

Ix, = 9%; log ( x)

1, = Nip

Vex = xx ~ Px, / 1,,)'

The signed statistic

U Vere

is approximately distributed as a standard normal deviate on the null hypothesis. The null
hypothesis states that the sample is drawn from an exponential distribution.

34

 



 

Appendix 2. Table with results on the Cox & Oakes statistic for exponentiality

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

CASE MTTF MTTR Numberof observations,

Cox & Oakesstatistic
NO. &

Coefficient of
variation

M1 M2 Ml M2 FAILURE REPAIR

N° of Cox & Coeff. N° of Cox & Coeff.
BUFFER observ Oakes of var. observ Oakes of var.

1 20 30 10 20 45 258 -1,049 0,97 258 -1,006 1,07

2 40 30 50 20 25 202 1,189 0,95 201 0,203 1,05

3 40 80 40 100 40 93 0,440 0,95 92 -2,917 1,41

4 45 55 30 35 55 141 1,067 0,94 140 -1,009 0,99

5 55 56 10 10 20 206 0,232 0,96 205 0,107 1,01

6 55 60 10 15 25 162 1,129 0,99 162 0,166 0,98

7 55 60 15 5 20 263 -1,801 1,09 263 -2,511 1,09

8 55 60 15 15 15 199 1,866 0,93 199 -1,616 1,11

9 55 60 45 50 35 122 0,534 0,98 122 -1,062 1,19

10 55 60 80 10 20 134 1,228 0,88 134 -6,659 1,71

11 55 60 80 10 120 123 0,843 0,90 123 -5,536 1,39

12 55 60 80 10 200 144 -1,245 1,07 143 -6,302 1,48

13 55 60 80 15 30 131 0,385 0,95 131 -5,272 1,44

14 60| 50 10 20 20 186 0,640 0,95 186 -0,002 0,97

15 60 55 10 80 20 85 0,745 1,00 84 -1,143 1,04

16 60} 55 10 80 120 73) 0,561 0,96 72 0,826 1,07

17 60; 90 70 15 80 79 1,205 0,90 79 -0,898 0,98

18 60 95 10 12 40 141 -0,489 1,01 141 0,398 0,92

19 70 80 65 60 50 102 -1,477 1,19 101 -1,192 1,07

20 75 20 10 20 10 282 -0,239 1,03 281 -1,098 1,04

21 80 60 10 5 40 193 0,042 0,96 193 -0,520 0,97

22 85 100 20 100 40 58 0,835 0,87 57 0,204 0,89

23 90 60 12 10 30 169 0,545 0,98 169 0,013 1,04

24 100; 50 60 25 45 148 1,881 0,88 148 -2,391 1,31
 

Bold printed values exceed the critical bounds of a standard normal deviate. (95%)
For these cases we do not find empirical evidence that the repair (or failure) times are
exponentially distributed.
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Appendix 3: Enumeration of the three-machine two-buffer system state space
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0< YI < voll

Y1=0

Y1=0

Y1=0

Y1=0

Y1 = vol 1

Y1 = voll

Y1 = vol 1

Y1 = vol 1

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

.0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

Y2 =0

Y2=0

Y2 =0

Y2 =0

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

0 < Y2 < vol2

Y2 = vol 2

Y2 = vol 2

Y2 = vol 2

Y2 = vol 2

Y2=0

Y2 =0

Y2 = vol 2

Y2 = vol 2

Y2 = vol 2

Y2 = vol 2

Y2 =0

Y2 =0
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The first tandem of machines can exist in a set of eight states according to MALATHRONAS

et al, [1983]. These states can be combined with the second buffer at intermediate level and the

third machine either up or down. This leads to 16 states in the total system (states 1 to 12 and 17

to 20 in the table above).

Similar to the reason why states in the two-machine one-buffer system are neglected, also here

it can be stated that the combination of the second buffer being empty and the third machine down

does not exist. This leaves us with the state (Buffer 2 empty, Machine 3 up) combined with the

eight states of the first tandem. This adds states to the total system (states 13 to 16, 25 to 26 and

31 to 32 in the table above).

Similarly the second buffer being full and machine 3 being up does not exist. This leaves us

with the state (Buffer 2 full, Machine 3 down) combined with the eight states of the first tandem. ©

This adds 8 states to the total system (states 21 to 24, 27 to 30).
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