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Introduction

Purpose

Introduction

Purpose of this work:
I study the structure of a class of Limit Analysis (LA) problems

I investigate how to design and implement (matlab) a convex
interior point (IP) method suited to the problem

I test the algorithm on a series of both static and kinematic
Limit Analysis problems of increasing size

I demonstrate that large problems can be solved by a
matlab-based implementation

I show the first result of a domain decomposition-like technique
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Introduction

Statement of the problem

Statement of the static Limit Analysis problem
An infinite bar is compressed under two rough rigid plates. Figure

A quarter of the section is meshed in triangular Lagrange p1 elements,
with appropriate symmetry and boundary conditions. Solving the static
problem leads to maximize a linear function of the stresses variables
(σx , σy , σxy ) of each triangle’s apex, under linear equalities constraints
(equilibrium, continuity, symmetry and boundary conditions), and one
non-linear inequality per apex. The latter depends on the selected
criterion. For example, with the Mises criterion:

(σx − σy )2 + (2σxy )2 6 (2c)2.
cont. tests

The solution is a lower bound for the Limit Analysis problem
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Statement of the problem: figure
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Figure: Compression of a bar between rough rigid plates
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Introduction

Statement of the problem

Typical optimization problems from static Limit Analysis

General form of the static Limit Analysis mechanical optimization
problems :

max cT x
s.t. Ax = b,

g(x) 6 0,

where
I c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n

I g = (g1, . . . , gp) is a vector-valued function of p convex
numeric functions gi .

This problem is convex, both equality and inequality constrained,
potentially from medium to large scale, sparse.
IP methods are particularly well suited for this kind of problem
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A solution approach for the convex programming problem

The barrier problem

Transformation in a barrier problem

We have adapted an IP algorithm proposed originally by VIAL
(1992) for convex programming problems
The algorithm is of the type “primal-dual interior point method”.
The development of the algorithm is as follows:
The original problem, is transformed in an unconstrained “barrier
problem”, with a parameter µ > 0, the “barrier parameter”:

max cT x + µ
∑p

i=1 ln(si)
s.t. Ax = b,

g(x) + s = 0.
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A solution approach for the convex programming problem

The KKT system

The optimality condition for the barrier problem

The KKT conditions are:

−c + AT w +

(
∂g
∂x

)T
y = 0 = Fd(x , y , w , s),

Ax − b = 0 = Fp1(x , w , y , s),
g(x) + s = 0 = Fp2(x , w , y , s),

YSe − µe = 0 = Fc(x , w , y , s),

where w ∈ Rm, y ∈ Rp and Y , S are the diagonal matrices
associated to y and s respectively. e ∈ Rp is a vector of ones.
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The Newton system

The Newton system

The KKT conditions for the barrier problem is expressed as:
F = (Fd , Fp1 , Fp2 , Fc) = 0 (the Newton system).
The following linear system must be solved:

H0 AT
(

∂g
∂x

)T
0

A 0 0 0
∂g
∂x 0 0 I
0 0 S Y




dx
dw
dy
ds

 =


−Fd
−Fp1
−Fp2
−Fc

 .

Given that g is convex, H0 =
∑p

i=1 yi
∂2gi
∂x2 is positive semi-definite,

and in some cases positive definite.
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The equilibrium system

Solving the Newton system: the equilibrium system

Some row and column reordering and a “block-elimination” reduction
lead to:

Y S 0 0
0 −Y−1S ∂g

∂x 0

0 0 H0 +
(

∂g
∂x

)T
YS−1 ∂g

∂x AT

0 0 A 0




ds
dy
dx
dw

 =


−Fc

−Fp2 + Y−1Fc

−Fd −
(

∂g
∂x

)T
YS−1r

−Fp1

 ,

with r = −Fp2 + Y−1Fc .
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A solution approach for the convex programming problem

The equilibrium system

Solving the Newton system: the equilibrium system (cont.)

Let us define H = H0 +
(

∂g
∂x

)T
YS−1 ∂g

∂x . Thus we first have to
solve the following system:[

H AT

A 0

] [
dx
dw

]
=

 −Fd −
(

∂g
∂x

)T
YS−1r

−Fp1

 .

I This kind of system is known as an “equilibrium system”.
I The equilibrium system is symmetric, never definite...

NB: To achieve the decrease of µ and computing the search
direction dz along C, we have implemented the Mehrotra
predictor-corrector algorithm.
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A solution approach for the convex programming problem

The equilibrium system

Solving the equilibrium system
The matrix H
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The equilibrium system

Solving the equilibrium system
Use of a specific method, or LU factorization
The factor L of LU
decomposition
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Computational experiments

Test problems

Application to the Mises and Gurson Criteria

We already gave an example of a plasticity criterion : the Mises
one.
Another criterion: Gurson. The exact solution is not known in this
case. Hereafter, f = 0.16.

(σx − σy )2 + (2σxy )2 + 8c2f cosh (σx + σy )

2k 6 4c2(1 + f 2).

I It gives rise to another convex programming, not a conic
programming problem.

I A series of tests on the preceeding mechanical system,
involving Mises and Gurson criteria, were performed.
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Computational experiments

Test problems

Computational Statistics

Experiments with Matlab 6.5.1.
On Apple Macintosh dual G5 2.5Ghz, 4.5GB of ram, under MacOSX. Only one
processor used, and 2GB of ram (32bits code).

Constraints Mises Gurson
Ntr Vars. Lin. Conv. Res. Iter. Time Res. Iter. Time
800 7 440 6 340 2 480 2.41346 18 70s 1.64768 14 18s

7 200 65 520 56 220 21 840 2.42270 18 12m 21s 1.64950 19 44m
20 000 181 200 155 700 60 400 2.42465 20 1h 32 m 1.64989 27 7h 24m

Table: Mises and Gurson criteria : comparison.

NB: the exact solution of this problem is known for Mises: 2.42768.
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Computational experiments

Static dual method (linear continuous velocity fields)

The kinematic problem

I The kinematic problem aims at producing an upper bound for
the Limit Analysis problem.

I Difficulty: following the usual way to solve this problem, one
has to integrate the dissipated power π, which is sometimes
very complicated to compute, if not possible

I Hence the interest of a kinematic method which does not use
the dissipated power expression, only the plasticity criterion
expression.
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Computational experiments

Static dual method (linear continuous velocity fields)

A new kinematic approach

The external power can be expressed as Q · q, where :
I Q the load vector,
I q = q (u) the generalized velocity vector, with u kinematically

admissible (KA).

Virtual Power Principle
Q and σ? are in equilibrium if, for all KA vectors u :

Q · q =

∫
V

σ : v dV

where v is the strain rate tensor (which depends on u).
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Computational experiments

Static dual method (linear continuous velocity fields)

Finite element discretization
Assuming a 1-dimensional loading problem Q?, for sake of
simplicity, and the velocities u linear and continuous:

qQ? = {u}T {β}Q?∫
V

σ? : v dV = {u}T [α]{σ?}

 ⇒ {u}T ([α]{σ?} − {β}Q?) = 0 ∀{u} KA

It leads to the following problem, in the case of the compressed bar
with q = U0:

max qQ?

s.t. [α]{σ?} − {β}Q? = 0,
f (σ?) 6 0, σ? constant in each finite element
+ limit, symmetric and loading linear conditions.
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Computational experiments

Static dual method (linear continuous velocity fields)

A KKT condition on the discretized problem:

−c + AT w +

(
∂f
∂x

)T
y = 0,

where :
A =

[
[α],−{β}

]T
, x =

{
{σ?}
Q?

}
.

I w: dual variables associated to linear constraints;
I y: dual variables associated to non linear constraints;
I c: coefficients of the objective function.
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Computational experiments

Static dual method (linear continuous velocity fields)

By analyzing the structure of the following equations:

{u}T
[
[α] {σ?} − {β}Q?

]
= 0,

−{c}T + {w}T A + {y}T
{

∂f
∂σ

}
= 0,

it can be proved that the field u = −w is admissible (ie KA and
PA). Hence the method is rigorously kinematic, requiring only the
plasticity criterion as information about the material.
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Computational experiments

Static dual method (linear continuous velocity fields)

Application: compressed bar, plane strain
I for this kind of problem (Gurson), it has been possible to use

a Cholesky factorisation to solve the main system
I For the largest problems, the main linear system had to be

slightly pertubed (diagonal perturbation of 10−8 on H)
Figure

Constraints Lin. cont. u
Ntr Variables Lin. Conv. Opt. Value Time.
400 2 403 790 801 1.6779 4s

3 200 9603 3 180 3 201 1.6655 44s
7 200 7 201 21 603 7 170 1.6611 2m 19s
20 000 60 003 19 950 20 001 1.6572 16m 3s

Table: The compressed bar and the Gurson material - kinematic results
for f = 0.16 using linear continuous velocity fields
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Computational experiments

Static dual method (linear continuous velocity fields)

Static bound for a Gurson material (f = 0.16): 1.6499

1.6499 <
F

2Bk < 1.6572

Only 0,7% of gap between the two bounds.
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Conclusion and future work

For bigger problems: a “divide and conquer” strategy

I When problems get too large, “out of memory” occurs within
Matlab and matrices are increasingly bad-conditionned.

I Hence the idea: splitting the problem in two (or more).
I It happens to be possible in the static-dual algorithm, because

of the mechanical meaning of all numerical variables in this
problem.
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The general idea on a simple example
Purpose : solving a static-dual kinematic problem with linear
continuous velocity fields.

I The loading vector: Q = F
I The generalized velocity vector: U0

C

(0, 0)
G A I

(4, 0)

(0, 2) H B J (4, 2)

U0

4× 2 problem (to solve)

C

(0, 0)
A

(4, 0)

(0, 2) B (4, 2)

U0

Starting 2× 1 problem
uC = (uA + uB) /2
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First iteration

(0, 0)
G A

(0, 2) H B

C

U0

Left prob.

A

C

pAC

tAC

A I
(4, 0)

B J (4, 2)

C

U0

Right pb.

I The loading vector: Q = (F , pAC , tAC , pCB, tCB)

I The velocity vector: q =
(
U0, (uA + uB)T /2, (uB + uC )T /2

)
,

where vectors uA, uB, uC are collected on the starting problem
I The sum of the objective values of these problems is a

kinematic bound
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Subsequent iterations

uleft
HG uright

IJC

G A I

H B J

U0

Middle pb.

(0, 0)
G A

(0, 2) H B

C

U0

Left prob.
A I

(4, 0)

B J (4, 2)

C

U0

Right pb.

I The sum of the objective values of the latter two problems is
another kinematic bound, noticeably lower than the previous
one. This bound improves steadily if we iterate this process.

I At each iteration, only the coefficients of the objective
function change.
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First experiments

I On the compressed bar
I Performed on a PowerbookG4, 1.33Ghz, 2Go of RAM.

Original problem Splitted problem
Size Result Time Global Iter. Result Time

16× 8 2.53284 n.s. 5 2.53303 n.s.
32× 16 2.48753 59s 2 2.48597 68s
64× 32 2.45833 1030s 2 2.45957 720s
I The results are more and more accurate as iterations go on.
I However, only a few iteration are necessary, in a reasonable

amount of time.
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Conclusion and future work

I The IP algorithm for the original convex nonlinear
programming problem is efficient, in terms of the number of
iterations and even in terms of CPU time per iteration.

I We have demonstrated that a code developed in the Matlab
environment, with reasonable resources, is almost as efficient
as industrial-strength codes.

I LA problems are also interesting as test-bed problems for
people working on large sparse symmetric structured systems
of linear equations, positive definite systems and indefinite
ones.

I The use of domain decomposition-like techniques makes
parallel processing attractive.
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