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Data assimilation : some dates

I 1950. Beginning of Numerical forecast.

I 1960. First operational models (barotropic models).

I 1963. Gandins method (kgriging).

I Optimal interpolation.

I 1980. 4D VAR equations.
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4D VAR approach

I Find the initial state of a dynamical system.

I Use observations of the system.

I Perform forecasts.
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4D VAR approach
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Statistical model

I A priori knowledge on values of x.

I Observations : yi

I Observation model yi = hi (x).
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Estimation from set theory
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Estimation from set theory
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Model y = h(x), solution in X ∩ h−1(Y ).
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Statistical point of view
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Estimation using observations

I If x and y (random vectors) are independent : little (if any)
can be said from x if some values are known from y

I General question : if y assumes some values in an experiment,
what can be guessed about values taken by x ?

I Problem : find a good estimate x̂ = g(y) of x.

I The minimum variance estimator solves

min
g(.)(measurable)

E[x− g(y)][x− g(y)]T .
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Parameter estimation

I Linear dependence y = Hx + e.

I The random variables x and e are uncorrelated.

I E [x] = xb, E [e] = 0.

I E [(x− xb)(x− xb)
T ] = B, E [eeT ] = R.

I g(K ) = xb + K (y − Hxb).

I The minimum variance estimator of x is

x̂ = xb + (B−1 + HTR−1H)−1HTR−1(y − Hxb)

”Equivalence” with the deterministic problem

min
x̂

J(x̂) =
1

2
||x̂ − xb||2B−1 +

1

2
||Hx̂ − y ||2R−1
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Inclusion of time : statistical model

I Observations at tj : Hj(Mj(x)) = yj + ej

I Initial state x = x(t0) = xb + ε.

I No model error : x(tj) =Mj(x).
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Optimization methods for Incr. 4DVAR

Problem formulation: nonlinear optimization problem

min
x∈Rn

J(x) =
1

2
||x − xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

I Regularized problem

I Large problems : x ∈ R106
, yj ∈ R105

[ORCAVAR, Weaver].

I The observations yj are noisy.

I Effective solution strategy Incremental 4DVAR : use the
inexact/truncated Gauss-Newton algorithm on
J(x) = 1

2F (x)TF (x) = 1
2 ||F (x)||22.
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Example : sea temperature

Gulf stream and Upwellings on the African coast
Use of satellite altimetry, model 1/3 degree
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Incremental 4DVAR algorithm

For k = 0 DO
Solve for sk the LLSP mins ‖F ′(xk)s + F (xk)‖2 by the
conjugate gradients method (CG, e.g. CONGRAD)
Set xk+1 = xk + sk

Fixed point convergence theory for
xk+1 = xk − F (xk)

′†F (xk) = G (xk) :

I F is twice continuously differentiable in neighborhood of x?.

I F ′(x?)
TF (x?) = 0.

I F ′(x?) has full column rank.

{xk} converges locally to x? if σ = ρ(G ′(x?)) < 1.
Note : σ is a geometrical quantity that is invariant under change
of variables.
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Outline

I Convergence condition and truncation (M.
Arioli)

I Preconditioning (A. Sartenaer and J.
Tshimanga)

I Use of the underlying PDE structure (A.
Sartenaer and Ph.L. Toint)

I Conclusions and perspectives
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CG truncation

I Solving F ′(xk)TF ′(xk)sk = F ′(xk)TF (xk) (denoted
F
′T
k F ′

ksk = F
′T
k Fk) exactly is very expensive for large systems.

I For ηk > 0, stop the CG method when δ(sk) ≤ ηk δ(s0) i.e.
the stopping criterion is satisfied.

I δRes(s) = ‖F ′T
k F ′

ks − F
′T
k Fk‖2

I δEN(s) = ‖s − F
′†
k Fk‖F ′T

k F ′
k

(see [Strakos, Tichy, 2005],[Arioli,

2004] ).

{xk} converges locally to x? if ηk ≤ ηmax and
σ + ηmax(1 + σ) < 1 (See [Dennis, Steihaug, 1986] for δRes)

I Why δEN ? :
I CG converges monotonically in the energy norm.
I Case of noisy problems.
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Energy norm of the error for linear least-squares
problems

I Linear case As = b + ε, ε ∼ N (0, I ) (or after linearization,
F ′

ksk = −Fk + ε)

I Maximum Likelihood estimate: sk minimizing ‖F ′
ks + Fk‖2

I Backward error problem

η(s) = min{‖∆Fk‖2 s.t. s solves min
u
‖F ′

ku + (Fk + ∆Fk)‖2}

I Closed solution η(sk) = δEN(sk) = ‖sk − F
′†
k Fk‖F ′T

k F ′
k

I Want to have δ2
EN(s) below the noise level ‖ε‖22.

I ‖ε‖22 follows a χ squared distribution, with m dof.
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Numerical experiment with the energy norm

I Linear case As = b + ε, A ∈ Rm×n, m = 100, n = 10
I Two test-cases best discrete least-squares approximation of a

function
I as linear combination of t 7→ sin(i t) (Well-cond. case),
I as linear combination of t 7→ t i (Ill-cond. case),

I where the ti ’s are equally spaced between in [1 2], the exact
solution being (1, 2 . . . , 10)T .

I ε is a Gaussian random vector N (0, In).

I We plot the residual b − As for each CG iterate s and
compute δ2

EN(s)

I The probability that a sample of εT ε is below 50.0 is very
weak (< 0.1%)
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Well-conditioned problem

Left : Residual b − As. Right : Observations b (red) and As (blue)
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Well-conditioned problem
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Well-conditioned problem
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Well-conditioned problem
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Well-conditioned problem
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Well-conditioned problem
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Well-conditioned problem
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Ill-conditioned problem
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Ill-conditioned problem

0 20 40 60 80 100−300

−200

−100

0

100

200
Postfit res. − iteration 1 − EN 9.7e+05

0 20 40 60 80 1000

2000

4000

6000

8000

10000
Model & obs.  − iteration 1

S. Gratton 27

Optimization methods for variationnal data assimilation



Data Assimilation Framework Preconditioning Techniques Properties Experiments Use of the underlying PDE structure Conclusions and Perspectives

Ill-conditioned problem
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Ill-conditioned problem
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Ill-conditioned problem
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Ill-conditioned problem
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Ill-conditioned problem
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Conclusion

I Stopping criterion based on the energy norm of the error.

I Natural when CG is used.

I Interesting properties for noisy problems.

I More test needed ...
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Outline

I Convergence condition and truncation (M.
Arioli)

I Preconditioning (A. Sartenaer and J.
Tshimanga)

I Use of the underlying PDE structure (A.
Sartenaer and Ph.L. Toint)

I Conclusions and perspectives
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A sequence of linear least-squares problems

I Originally developped for SPD linear systems with multiple
right-hand sides (RHS).

I Solve systems Ax = b1, Ax = b2, . . ., Ax = br with RHS in
sequence, by iterative methods: Conjugate Gradient (CG) or
variants.

I Precondition the CG using information obtained when solving
the previous system.

I Extension of the idea to nonlinear process such as
Gauss-Newton method. The matrix of the normal equations
varies along the iterations.
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The CG algorithm (A is spd and large !)

I CG is an iterative method for solving

min
x∈Rn

1

2
xTAx − bT x or Ax = b

I Iterations: Given x0 ∈ Rn; A ∈ Rn×n; b ∈ Rn

I Set r0 ← Ax0 − b0; p0 ← −r0; i ← 0
I Loop on i

αi ← (rT
i ri )/(pT

i Api )
xi+1 ← xi + αipi

ri+1 ← ri + αiApi

βi+1 ← (rT
i+1ri+1)/(rT

i ri )
pi+1 ← −ri+1 + βi+1pi

I ri are residuals; pi are descent directions; αipi are steps.
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The CG properties (in exact arithmetic !)

I Orthogonality of the residuals: rT
i rj = 0 if i 6= j .

I A-conjugacy of the directions: pT
i Apj = 0 if i 6= j .

I The distance of the iterate xi to the solution x∗ is related to
the condition number of A, denoted by κ = λmax

λmin
(≥ 1):

||xi − x∗||A ≤ ηi ||x0 − x∗||A with ηi = 2

(√
κ− 1√
κ + 1

)i

⇒ The smaller cond(A) ≡ κ is, the faster the convergence.

I Exact solution found exactly in r iterations, where r ≤ n is the
number of distinct eigenvalues of A ∈ Rn×n.
⇒ The more clustered the eigenvalues are, the faster the
convergence.
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Why to precondition ?

I Transform Ax = b in an equivalent system having a more
favorable eigenvalues distribution.

I Use a preconditioning matrix H (which must be cheap to
apply).

I Ideas to design preconditioner H:
I H approximates A−1.
I cond(HA) < cond(A).
I HA has eigenvalues more clustered than those of A.

I Note: when a preconditioning is used, residuals are:
I Orthogonal if H is factored in LLT .
I Conjugate w.r.t. H if H is not factored.
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Preconditioning techniques considered (I)

I We consider techniques to precondition or improve an existing
preconditioner (second level preconditioning) :

I Solve Ax = b1 and extract information info1.
I Use info1 to solve Ax = b2 and extract information info2.
I Use info2 (and possibly info1) to solve Ax = b3 and . . .
I . . .

I Infok will be:
I residuals;
I descent directions;
I steps;
I or other vectors such as eigenvectors of A ...
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Preconditioning techniques considered (II)

We study and compare two approaches:

I Deflation [Frank, Vuik, 2001].
I Limited Memory Preconditioners (LMP): Preconditioners

based on a set of A-conjugate directions.
I Generalization of known preconditioners: spectral [Fisher,

1998], L-BFGS [Nocedal, Morales, 2000], warm start [Gilbert,
Lemaréchal, 1989].

We cover:

I Theoretical properties.

I Numerical experiments (data assimilation).
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Deflation Techniques

I Given W ∈ Rn×k (k � n) formed with appropriate
information obtained when solving the previous system.

I Consider the oblique projector P = I −AW (W TAW )−1W T .

I Split the solution vector as follows x∗ = (I − PT )x∗︸ ︷︷ ︸
direct

+ PT x∗︸ ︷︷ ︸
iterative

.

I Compute (I − PT )x∗ with a direct method.

I Compute PT x∗ with an iterative method.
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Some Properties (Deflation)

I Computation of (I − PT )x∗:

I (I − PT )x∗ = W (W TAW )−1W TAx∗ = W (W TAW )−1W Tb.

I Computation of PT x∗:

I Any solution of the compatible singular system PAy = Pb
satisfies PT x∗ = PT y .

I Note: PA = (PA)T and cond(PA) ≤ cond(A).

I Use CG with y0 = 0 to solve PAy = Pb and compute PT y .
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Limited Memory Preconditioners (LMP)

I General form:

Hk+1 = [I −
k∑

i=0

Awiwi
T

wi
TAwi

]T [I −
k∑

i=0

Awiwi
T

wi
TAwi

] +
k∑

i=0

wiwi
T

wi
TAwi

,

with wi
TAwj

{
= 0 if i 6= j
> 0 if i = j

I Particular forms
I The wi ’s are the descent directions obtained from CG: wi = pi

⇒ L-BFGS preconditioner.
I The wi ’s are eigenvectors of A: wi = vi

⇒ spectral preconditioner.
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Spectral Properties for LMP (I)

I Theorem : the spectrum µ1, . . . , µn of the preconditioned
matrix Hk+1A satisfies:{

µj = 1, for j = 1, . . . , k
λj−k(A) ≤ µj ≤ λj(A), for j = k + 1, . . . , n,

where λj(A) is the j−th eigenvalue of A (increasing order
assumed).

I Note: the matrix A to precondition is the same (only the RHS
changes).
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Spectral properties for LMP (II)

λ3 λ4 λ5 λ6λ1 λ2

µ4

µ5

µ6

µ3

1

µ1 = µ2 = 1

I Eigenvalues translated to 1.

I The rest of the spectrum is not expanded compared to the
spectrum of A.
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Existence of a factored form for the LMP (not the
Cholesky factor !)

I L-BFGS:
I A possible factored form is Hk+1 = Lk+1L

T
k+1 where:

Lk+1 =
k∏

i=0

(
I − siyi

T

yi
T si

+
si√
yi

T si

ri
T

‖ri‖

)
,

with si = xi+1 − xi and yi = ri+1 − ri .

I Same cost in memory and CPU as the unfactored form.
I Spectral:

I A possible factored form is Hk+1 = L2
k+1 where:

Lk+1 = I +
k+1∑
i=1

(
1√
λi

− 1

)
vivi

T

vi
T vi

.

I Same cost in memory as the unfactored form.
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Why looking for a factored form H = LLT ?

I With a non factored form, we use CG preconditioned by H.

I With a factored form, we solve LTALu = LTb; x = Lu.

Advantages:

I When accumulating preconditioners, symmetry and
positiveness are still maintained:

LT
1 AL1y1 = LT

1 b1, LT
2 (LT

1 AL1)L2y2 = LT
2 LT

1 b2, . . .

I Least-squares minx‖Ax − b‖ or AAT x = ATb:
LSQR (or CGLS) is more accurate than CG in presence of
rounding errors but works with (A,AT , L, LT , b) instead of
(ATA,ATb,H).

I More appropriate if reorthogonalization of the residuals is used.
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Experiments with unpreconditioned LSQR
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LSQR is better than CG !
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Experiments with LSQR preconditioned with
factored L-BFGS
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LSQR is again better than CG !
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Why to reorthogonalize the residuals ?

I In finite precision, residuals often loose orthogonality (or
conjugacy) and theoretical convergence is then slowed down.

I Reorthogonalization of residuals in CG is terribly successful
when matrix-vector product is very expensive compared to
other computations in CG (see example in the next slide).

I Note: to restore orthogonality or conjugacy, working with
LTAL and the canonical inner-product is better (memory,
CPU, error propagation) than working on A preconditioned by
H.
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Example of reorthogonalization effect : CERFACS
data assimilation system (1 000 000 unknowns)
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Experiments with a data assimilation problem

Problem formulation: nonlinear least-squares problem

min
x∈Rn

J(x) =
1

2
||x − xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

I Size of real (operational) problems : x ∈ R106
, yj ∈ R105

.

I The observations yj are noisy.

I Solution strategy : Incremental 4DVAR (i.e.
inexact/truncated Gauss-Newton algorithm).
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Main ingredients

I Sequence of linear symmetric positive definite systems to
solve:

AT
i Aix = AT

i bi

I Whose matrix varies.
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Experiments description

Algorithmic variants tested:

I Use CG to solve the normal equations.
I Compare 3 preconditioning techniques:

I Deflation technique (using spectral information).
I Spectral preconditioner (using spectral info. but differently).
I L-BFGS preconditioner (using descent directions).

I Where spectral information is needed, use Ritz (vectors) as
approximations of the eigenvectors.

I Ritz vectors are obtained by mean of a variant of CG: the
Lanczos algorithm which combines linear and eigen solvers.
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Experiment on a small system (I) [A. Lawless, N.
Nichols, 2001, University of Reading]

Ranking of the preconditioners using the basic strategies.
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Results L-BFGS - Deflation
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Deflation is better than L-BFGS !
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Results Noprecond - L-BFGS
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L-BFGS is better than Noprecond !
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Results Spectral - Noprecond
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Noprecond is better than Spectral !
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Remarks on our system !

I Spectral preconditioner:
I Does not work in our case.

I L-BFGS preconditioner:
I Requires no large changes in the matrix.
I Based on by-products of CG.
I More efficient than the spectral preconditioner or than no

preconditioner.

I Deflation:
I Is stable even when the matrix changes.
I May be expensive (W TAW ) in CPU time.
I More efficient than the other techniques.
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Outline

I Convergence condition and truncation (M.
Arioli)

I Preconditioning (A. Sartenaer and J.
Tshimanga)

I Use of the underlying PDE structure (A.
Sartenaer and Ph.L. Toint)

I Conclusions and perspectives
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Some treated problems
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I Minimal surface :

min
u

∫ ∫ √
1 + u2

x + u2
ydxdy

I Quadratic minimization :

minu uTAu − 2uTb ⇔ Au = b

I Image deblurring problem :

minJ (f ) = 1
2‖Tf − d‖22 + TV (f ),

where TV (f ) is the discretization of∫ 1

0

∫ 1

0

(
1 + (∂x f )2 + (∂y f )2)

) 1
2 dxdy .
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Why multigrid

I Solution based on discretization :
High accuracy ⇒ computational cost

I Use of coarse grids :

1. to find a good starting point
2. to solve a subproblem (ex : residual equation)

I Well-known efficient method for solving SPD linear systems
resulting of the discretization of a continuous problem

I Multigrid tutorial [ W. Briggs, V.E. Henson and
S. McCormick, 2000 ]
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Why trust-region methods

I Newton method : local quadratic convergence

I Trust-region methods : Convergence for all starting point
(Global convergence)

I Reduces to the Newton method when close enough to the
solution ⇒ Quadratic convergence

I Overview of convergence results and algorithms [ A. Conn,
N. Gould and Ph. Toint, 2000 ]
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Trust-region mechanism

I Definition of a model m of the objective function f
I Definition of a region where the model is supposed to

represent well the objective function
I Computation of a step that sufficiently reduces m
I Step acceptance and TR radius ∆ update related to the ratio

f (xk+1)− f (xk)

m(xk+1)−m(xk)

I Refuse the step and shrink the TR when the ratio is smaller
than a constant

I Accept the step and possibly enlarge the TR when the ratio is
large enough
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Trust-region multilevel algorithm

I The trust-region model is possibly based on the coarse grid
problem.

I Algorithm using same ingredient as traditional multigrid:
smoothing, prolongation (P), restriction (R),...

I Correction of the models similar to that in the FAS multigrid
method is needed.

I Global convergence to first order and weakly second order
critical points is proved [ Gratton, Sartenaer, Toint,
2005 ] .
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2-level description

xH,3 = xH,∗xH,1

xh,k+1 + sh = xh,k + P(xH,∗ − xH,0)xh,k

R

xH,2Rxh,k = xH,0

I Fine space h, coarse space H.

I fh fine function to be minimized. fH coarse representation.
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First order coherence between levels

I The immediate coarse model is defined by
hH(xH,0 + s) = fH(xH,0 + s)+ < v , s >, where
v = R∇xhh(xh,k)−∇x fH(xH,0). Therefore
∇xhH(xH,0) = R∇xhh(xi+1,k)

I Linear coherence

hh(xh,k + Ps) = hh(xh,k) +

< R∇xhh(xh,k), s > + o(s)

hH(xH,0 + s) = hH(xH,0) +

< ∇xhH(xH,0), s > + o(s)

I Recursion useful only if ‖R∇xhh(xh,k)‖ ≥ κ‖∇hh(xh,k)‖
I Linear correction: similar to the full approximation scheme !
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Model choice

At iterate xh,k , if recursion useful (i.e.
‖R∇xhh(xh,k)‖ ≥ κ‖∇hh(xh,k)‖)

I use either a Taylor model mk(s) = hh(xh,k)+ <

∇xhh(xh,k), s > +
1

2
< ∇xxhh(xh,k)s, s >

or the coarse model hH

I if not useful, use a Taylor model
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A possible smoother

Approximatively solve (suff. decrease) the local TR subproblem
min‖s‖i≤∆ Q(s) = 1

2 < Hs, s > + < g , s >

I Steihaug-Toint truncated CG

I Exact Moré-Sorensen Method on small dimension spaces
I Take advantage of the good smoothing properties of linear

Gauss-Seidel
I Compute s0 by minimizing along the largest gradient

component
I Perform some Gauss-Seidel cycles (minimization along

coordinate axes) to obtain s1
I Take s1 if ‖s1‖i ≤ ∆
I Else, if s1 is gradient related (< g , s1 >≤ κ‖s1‖‖g‖), backtrack
I Else minimize Q(s) for ‖s‖i ≤ ∆ on the path [0, s0, s1]
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Numerical experiments

Comparison of multigrid and mesh refinement on test-problems
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Test-problems
I Dirichlet-to-Neumann transfer problem (DN) Minimize∫ π

0
(∂yu(x , 0)− φ(x))2 dx ,

where u is the solution of the boundary value problem

∆u = 0 in S ,
u(x , y) = a(x) on Γ,
u(x , y) = 0 on ∂S\Γ.

and φ(x) =
∑15

i=1 sin(i x) + sin(40 x).
I 2D Quadratic (check) example (Q2)

min
x∈Rn

1

2
xTAx − xTb,

where A is a FD discretization of the Laplacian.
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Test-problems

I 3D Quadratic example (Q3) obtained as from a FD of

−(1 + sin(3πx)2)∆u(x , y , z) = f in S3,
u(x , y , z) = 0 on ∂S3.

I The minimum surface problem (Surf)

min
v

∫ 1

0

∫ 1

0

(
1 + (∂xv)2 + (∂yv)2

) 1
2 dx dy ,

The oscillatory boundary condition is

v0(x , y) =


f (x), y = 0, 0 ≤ x ≤ 1,
0, x = 0, 0 ≤ y ≤ 1,
f (x), y = 1, 0 ≤ x ≤ 1,
0, x = 1, 0 ≤ y ≤ 1,

where f (x) = sin(4πx) + 1
10 sin(120πx)
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Test-problems

I The image deblurring problem (Inv)

minJ (f ) where J (f ) =
1

2
‖Tf − d‖22 + TV (f ),

where TV (f ) is the discretization of the total variation
function ∫ 1

0

∫ 1

0

(
1 + (∂x f )2 + (∂y f )2

) 1
2 dx dy .

I Borzi and Kunish’s solid ignition optimal control (Opt):

min
f
J (u(f ), f ) =

∫
S2

(u − z)2 +
β

2

∫
S2

(eu − ez)2 +
ν

2

∫
S2

f 2,

where
−∆u + δeu = f in S2,

u = 0 on ∂S2.
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Test-problems

I A nonconvex optimization problem (NC)

min
u,γ
J (u, γ) =

∫
S2

(u − u0)
2 +

∫
S2

(γ − γ0)
2 +

∫
S2

f 2,

where
−∆u + γu − f0 = f in S2,

u = 0 on ∂S2,
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Some treated problems: number of cycles
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Some treated problems: number of cycles
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Results for 4D Var

I Improvements of the incremental 4D VAR
I Stopping criterion based on the energy norm of the error.
I Comparison of deflation, spectral and BFGS preconditioner.
I Preliminary tests show weakness of spectral compared to

deflation and L-BFGS in a data assimilation experiment.

I Work on new algorithms
I Use multigrid techniques and trust-region mechanism.
I Globally convergent multigrid algorithm for optimization

proposed.
I Encouraging results on academic test-cases are presented :

multigrid behaviour of the solution methods.
I Extension to a Saint Venant system under study.
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