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Some recent methods: web link

analysis
Exploiting links between documents




.~ Web link analysis

m Suppose we performed a web search
with a search engine

|
m Objective:

— To improve the (content-based) ranking of

the search engine

'
— Based on the graph structure of the web
O hyperlinks




. Web link analysis

m The objective here is to exploit the links
m\

between documents (hyperlinks)

m Documents/hyperlinks can be viewed as
a directed graph

m Two algorithms will be introduced:
— PageRank
—HITS

m Then, we will introduce a more general

algorithm for collaborative
recommendation




.~ Web link analysis

m A set of techniques
— Applied to: Hyperlink document repositories
— Typically web pages

m Objective:
— To exploit the link structure of the documents
— In order to extract interesting information

— Viewing the document repository as a graph
where

* Nodes are documents
- Edges are directed links between documents



. (1) The PageRank algorithm

m P. Baldi, P. Frasconi & P. Smyth (2003)
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and the Web
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- The PageRank algorithm

— Mining the Web
— Morgan Kaufmann

m S. Chakrabarti (2003)
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- The PageRank algorithm

m Introduced by Page, Brin, Motwani &
Winograd in 1998

m Partly implemented in Google




- The PageRank algorithm

m To each web page we associate a score, x

— The score of page i, x;, is proportional to the
weighted averaged score of the pages pointing to

page i

\/




. The PageRank algorithm

m Let w;; be the weight of the link
connectlng page i to page j
— Usually, it is simply 0 or 1

— Thus, w;= 1 if page i has a link to page j;
w;=0 other\lee




The PageRank algorithm

m Let W be the adjacency matrix made of
the elements w,
— Notice that this matrix is not symmetric

— We suppose that the graph is strongly
connected



- The PageRank algorithm

® In other words
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—where w; is the outdegree of page j




The PageRank algorithm

® [n other words,

m A page with a high score Is a page that
IS pointed by

— Many pages
— Having each a high sm

m Thus a page is an important

page if

— It is pointed by many, O
important, pages

T




The PageRank algorithm

m These equations can be updated
iteratively until convergence

® In order to obtain the scores, x;
— We normalize the vector x at each iteration

m The pages are then ranked according to
their score




. The PageRank algorithm

m This definition has a nice interpretation
In terms of random surfing

m |[f we define the probability of following
the link between page i to page j as




- The PageRank algorithm

m We can write the updating equation as
i:z(k + 1) = P(page(k + 1) = 1)

— Z P(page(k + 1) = i|page(k) = j) z;(k)

=
m And thus we can define a random surfer
following the links according to the
transition probabillities

0
J“m_“mL P(page(k + 1) = i|page(k) = j) = -
qj.




- The PageRank algorithm

I
0= 3w

m This is the equation of a Markov model
of random surf through the web

m This is exactly the same equation as
before:




. The PageRank algorithm

= x. can then be viewed as the probability
of being at page i
— One can show that the solution to these

equations is the stationary distribution of
the random surf

— Which is the probability of finding the surfer
on page i on the long-term behaviour

m The most probable page is the best
ranked




The PageRank algorithm

m One can show that the scores can also
be obtained

— By computing the principal left eigenvector
of the matrix P,

— The probability transition matrix of the
Markov process

— Containing the transition probabilities




~ (2) The HITS algorithm

m P. Baldi, P. Frasconi & P. Smyth (2003)
— Modeling the Internet
and the Web
— John Wiley & Sons
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- The HITS algorithm

— Mining the web
— Morgan Kaufmann

m S. Chakrabarti (2003)
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' The HITS algorithm




. The HITS algorithm

®m The model proposed by Kleinberg is
| based on two concepts
— Hub pages
o — Authorities pages
m We thus assume that these are two
categories of web pages

m These two concepts are strongly
connected




- The HITS algorithm

m Example:
— Suppose we introduced the query
“Car constructors”

People interested

1n car constructors

o T~

Ferrari Renault Ford

Authorities

Car constructors

Hubs

Prost Schumacher




Hubs
ros cher

The HITS algorithm
m Hubs
| — Link heavily to authorities

— A good hub points to many good authorities
— Hubs have very few incoming links

Ferrari Renault Ford
Authorities




. The HITS algorithm

m Authorities
— Do not link to other authorities
— A good authority is pointed by many good hubs

— The main authorities on a topic are often in
competition with one another

Ferrari Renault Ford

a Authorities

Hubs

Prost Schumacher




The HITS algorithm

m The objective is to detect good hubs
and good authorities

— from the results of the search engine

m We therefore assign two numbers to
each returned page i:
— A hub score, x",
— An authority score, x4,




m Let w;; be the weight of the link
connecting page i to page j
— Usually, it is simply 0 or 1
— Thus, w, = 1if page i has a link to page j;
w;;= 0 otherwise
m Let W be the matrix made of elements

W,

] — Notice that this matrix is not symmetric

— We suppose that the graph is strongly
connected




. The HITS algorithm

m A possible procedure for computing
hub/authorities scores (Kleinberg)

— A page's authority score is proportional to the
sum of the hub scores that link to it

T
a . ()
T =1 E Wi T;
1—1

— A page's hub score is proportional to the sum of
the authority scores that it links to

T
. h B E v . . a
j=1



. The HITS algorithm

-
= We showed that this is exactly uncentered
principal components analysis (PCA)

m Kleinberg used this iterative procedure in
order to estimate the scores (with a
normalization)

— He showed that this is equivalent to computing the
eigenvectors of the following matrices

WWT witw

— To obtain respectively the vector of hubs scores
and the vector of authorities scores




. The HITS algorithm

m We further showed that this procedure
IS also related to both

— Correspondence analysis
— A random walk model through the graph




The multivariate analysis of
undirected graphs




- Context

m Main purpose: To exploit the graph
structure of large repositories

* \Web environment
» Digital documents repositories
« Databases with metadata

m We will focus on databases and
collaborative recommendation



Main goal

m To exploit and analyse

— New similarity measures between the
nodes of a graph

m To use these similarities for
— Collaborative filtering

'
— Clustering

] — Graph visualization
— Etc...




Main point

m These similarity measures between two
nodes not only depend on

— The weights of the edges (like the « shortest
path » distance)

m But also on

— The number of paths connecting the two
edges

m They take high connectivity into account
# shortest-path or geodesic (Dijkstra) distance




Graph: The adjacency matrix

= The elements q; of the adjacency matrix A of a
weighted, undlrected graph are defined as

w;; if node ¢ is connected to node j
a;; = .
/ 0 otherwise

where A is symmetric

= The w; 2 0 represent the strength of relationship
between node i and node j

Ml / 0O 0 0 1 0 0

cl 00 0 0 1 0

00 0 1 1 0

n A=1|10 10 0 1
0 0 1 1 0 0 1

~ 0 0 0 1 1 0

\0 0 0 0 1 0

SO O O OO




Graph: The Laplacian matrix

m The Laplacian matrix L of the graph is defined by

L=D-A
where D = diag(a;.) with d;; = [D],, = a; = Z?:l Qi
(the outdegree of each node)

L is doubly centered

If the graph is connected, the rank of L is n — 1, where
n is the number of nodes

L IS symmetric
L is positive semidefinite




A random walk model on the graph

m As for PageRank, every node is associated to a state
of a Markov chain

= The random walk is defined by the single-step
transition probabilities

P(s(t +1) = jls(t) = i) = pij =

T
a;, — E oy
7=1

= In other words, to any state or node i, we associate a
probability of jumping to an adjacent node, s(t+1) =
— which is proportional to the weight w;; of the edge connecting
iand j

where




. Two main quantities

m We then compute two main quantities
from this Markov chain:

— The average first passage time
— The average commute time




Average first-passage time

m m(kli) = average number of steps a
random walker, starting in state i, will
| take to enter state k for the first time

i "

m(kl|i) =1+ Zpij m(kl|7), for i # k
\ =1

J#k
. m(k|k) =0

m These equations can be used in order
BN to iteratively compute the first-passage

M times.




. Average commute time

m n(iy) = m(li) + m(ilj)
= average number of steps a random
walker, starting in state i # j, will take
before entering a given state j for the
first time, and go back to i

m Note: while n(i,j) iIs symmetric by
B definition, m(ilj) is not.

-




Computation of the basic quantities
by means of L

= |f we further define e; as the ith column of I

ei=1[0..., 0,1, 0,....0]"
1 1—1 2 2+1 n

m we obtain the remarkable form

n(i,j) = 2N.(e; — ej)TLJr(e@ —e,)

where each node i is represented by a unit
basis vector, e, in the node space

m L' is the Moore-Penrose pseudoinverse of
the Laplacian matrix of the graph




Computation of the basic quantities

by means of L

m Thus, n(ij) Is a Mahalanobis distance
= Commute Time Distance

= Indeed, one can show that L" is
— (1) Symmetric
— (2) Positive semidefinite
— (3) Doubly centered




. Commute time distance

' . 1
i
1
./.
. . 1
J ' J 1
n(i) distance = Cst . 1.0 n(i) distance = Cst . 0.5

Shortest_path = 1 Shortest_path = 1




5 Embedding in an Euclidean space

'
B = So that any multivariate statistical analysis tool
can be applied to analyse the graph

m The node vectors can be mapped into an
Euclidean space preserving the commute time
distance

— In this space, the node vectors are exactly separated
by commute time distances

m The node vectors form a cloud of points, each
point being a node




g Embedding in an Euclidean space

m For instance:

— Clustering of the nodes

— Finding dense regions in the graph
— Finding outlier nodes

— Representing the graph in a low-dimensional
space (principal components analysis)

— Representing the graph in function of the similarity
with some reference nodes (discriminant analysis)

- — Finding central nodes in the graph
— Find the most similar node (nearest neighbour)
— Etc...




Maximum variance subspace
projection of the nodes vectors

m This decomposition is similar to principal
component analysis (PCA)
— The projected node vectors has maximal variance
— In terms of Euclidean commute time distance
— Among all the possible candidate projections

m |t allows us to visualize the graph




An example of PCA:
Original graph

B
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PCA: Projection of the nodes on
the two first axis
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PCA.: Application to the

visualization of a network of
criminals




Another example : Application to
clustering
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Clustering with ECT distance

Graph construction :

data




Clustering with ECT distance
HHH

Graph construction :

3 nearest neighbors
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Graph construction :

data

d<I
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~ Clustering with ECT distance
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~ Clustering with ECT distance
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Clustering with ECT distance
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k-means

1|:| T T T T T T T T 10 T T T T
Gog @@%é JEF++44_‘|-rF
L CQP 1 - + +

|
. Clustering with ECT distance
m Clustering results using ECT distance k-means, in comparison with the classical
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~ Autres exemples
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. Links with other methods

m Very interesting links with
— Spectral clustering
— Graph visualization algorithms

— Electrical networks

 The commute time distance is equivalent to the
effective resistance

— Experimental design



Application to collaborative
recommendation




Expenmental results: Application
- to collaborative recommendation

Results on a real movie database: a sample
of the MovielLens database

= 943 users
1682 movies

= 19 movie categories
= 100,000 ratings
= Divided into a training set and a test set

- Experiment: suggest movies to
people



Experimental results: Application
. to collaborative recommendation

m Tables connected by relationships

Example: A movie database

- Marco - La grande vadrouille - Science-fiction
- Céline - otar WWars - French movie
- Tung - otar Trek - Action movie

- Frangois - Matrix - Drama

- Alain I L'appartement -

- Manuel - La chévre belongs_to

- Stéphane has_watched | 5ouver e soldat Ryan

- Murielle

- Jean-Michel

- Computing similarities beween people and movies
allows to suggest movies to watch or not to watch
(collaborative recommendation)




Experimental results: Application
to collaborative recommendation

= The test set contains 10 movies for each user
= 9430 movies

- Experiment: suggest unwatched movies to
people

Cl

M2




. Scoring algorithms

= Average commute time (CT)

= Average first-passage time (One-way)

= Average first-passage time (Return)

- L (pseudoinverse of the Laplacian matrix of the
graph)

- Katz

= K-nearest neighbours (KNN) (Standard technique)

= Dijkstra (Standard technique)

= Cosine (Standard technique)




Performance evaluation: degree of
agreement (a variant of Somers’D)

Ideal ranking

Test set -<

Relevance




- Results
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.~ Conclusion

= We introduced a general procedure for
computing dissimilarities between any pair of

elements

m The commute time Is a distance meftric In an
Euclidean space

m This allows the application of data analysis
methods (PCA, discriminant analysis,
clustering) for graph analysis




