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Three Parts

 Introduction to Inductive Databases
 Inductive Database Systems

 MolFea : Mining features in Molecules

 Constraint Based Mining
 Integrate data mining with databases
 Querying for patterns using constraints



Inductive databases

 Data mining
 search for interesting and understandable patterns in data

 State-of-the-art in data mining ~ databases in the
early days

 A theory of data mining is lacking

 View by Iemielinski and Mannila (CACM 96)
 Make first class citizens out of patterns

 Query not only the data but also the patterns

 Tightly integrate data mining and databases



Inductive querying

 The need to actively mine / analyze scientific
databases in biology, chemistry
 “Understandable” patterns needed
 Scientist wants control of mining process
 Constraint based mining

 Constraints specify patterns of interest
 E.g. find all patterns that occur in at least 30 % the

actives and at most 3% of the inactives and contain a
benzene ring

 Mining becomes a querying process
 «There is no such thing as real discovery, just a matter of the

expressive power of the query languages» Iemielinski & Mannila, CACM

96



Molecular Feature Mining

 What ?
 Find fragments (substructures) of interest in sets

of molecules

 Why ?
 Discover new knowledge
 Use in predictive models

 SAR (Structure Activity Relationship)



Molecules and Fragments

 2D-structure
 essentially Graphs

 Fragments
 substructres
 We : linear fragments
 Sequence of atoms and bonds

 Linear fragments
 ‚o‘, ‚c‘, ‚cl‘, ‚n‘, ‘s‘,... denote

elements
 ‚-‘  ... single bond

‚=‚ ... double bond
‚#‘ ... triple bond
‚:‘ ... aromatic bond

 (hydrogens implicit)

 Smarts encoding

‚O-c:c:c:c-Cl‘



Constraint-based Data Mining

 What ?
 Use constraints to specify which

fragments/patterns are interesting
 E.g.  Frequency and syntax

 Why ?
 Declarative Querying
 Interactive Process
 Inductive database idea



Constraint-based data mining

 Generality
 One fragment is more general  than another one if it is a

substructure of the other one

 Notation : g ≤ s (g is more general than s; i.e. g will match a
graph/string whenever s does)

 Graphs : ~ subgraph relationship

 Strings : substring / subsequence relationship
 E.g. aabbcc is more general than ddaabbccee (substring)

 E.g. abc is more general than aabbcc ( subsequence)

 (Item)sets : subset relation, e.g. {a,b} subset {a,b,c}



Search Space for Strings

  

ε
a   b

aa   ab   ba  bb

aaa   aab   aba   baa   abb   bab   bba   bbb

...

  

Every string has max two fathers

Observe that Σ*  is not a lattice !

mgg  can contain more than element

mgs may be infinite



Primitives

 Generality MolFea Symmetry !
 g is equivalent to s  (syntactic variants) only when they are a

reversal of one another
 E.g. ‚C-O-S' and ‚S-O-C' denote the same substructure

 g  is more general than s if and only if g is a subsequence of s or g
is a subsequence of the reversal of s

 E.g. ‚Cl-O-S' ≤ ‚Cl-O-S-c:c:c'
 E.g., ‚O-Cl' ≤ ‚Cl-O-S'

 Frequency of a fragment f on a data set D
 The percentage of data points in D that f occurs in
 E.g let f be aa and let D={abaa,acc, caa}; freq(f,D) = .66=2/3



Primitive Constraints

 f ≤  P, P ≤ f, not (f ≤ P) and not (P ≤ f):
f ... unknown target fragment,
P ... a specific fragment
e.g. abbaa  ≤  f

 freq(f, D)
relative frequency of a fragment f  on a data set D

 freq(f, D1) ≥ t, freq(f, D2) ≤ t,
t ... positive real number between 0 and 1
D1, D2 ... Data sets
e.g.  freq(f, Pos) ≥ 0.20



Example query

 Let E1 = {aabbcc,abbc,bb}

 Let E2 = {abc,bc,cc}

 freq(f,E1) ≥ 2 and freq(f,E2) = 0  and “a “ < f

 Solutions : abb and abbc



Example Queries

 (`N-O'≤ f) ∧
(freq(f, Act) ≥ 0.1) ∧
(freq(f, Inact) ≤ 0.01) 

 not(‚F' ≤ f) ∧ not (‚Cl' ≤ f) ∧
not (‚Br' ≤ f) ∧ not (‚I' ≤ f) ∧
(freq(f, Act) ≥ 0.05) ∧
(freq(f, Inact) ≤ 0.02)

 Queries are conjunctions of primitive constraints



Representing Solutions

 Traditional min. frequency constraint
 Let c be freq(f, Act) ≥ x

 c satisfies Anti Monotonicity property
  If we have a fragment g ≤ s,

ν Then if s is a solution then g is a solution as well

 Imposes a lower border S=max(Sol) on the space of
solutions



A String Example

freq(f,D) ≥ 2 where D=
 

ABCD BDEF

ABDF ABCF

 

ε
A B C D F

AB BC BD

ABC

  Characterized by S = {ABC, BD, F}= max(Sol)

  

Consider E

E is not frequent,

Therefore no string containing E  is frequent

  

Consider ABC

ABC is frequent

Therefore all substrings of ABC  are frequent



Another String Example

Let f ≤    ABD

 

ε
A B D

AB BD

ABD

  Characterized by S = {ABD}= max(Sol)



Representing Solutions

 Traditional max frequency constraint
 Let c be freq(f, Act) < x

 c satisfies Monotonicity property
  If we have a fragment g ≤ s,

ν Then if g is  a solution then s is a solution as well

 Imposes an upper border G=min(Sol) on the space of
solutions



A String Example

Consider “B” ≤ f and freq(f,D) ≥ 2 with D=
 

ABCD BDEF

ABDF ABCF

 

ε
A B C D F

AB BC BD

ABC
  Characterized by S = {ABC}

  and G = {B}

 

B

AB BC

ABC

  Characterized by S = {ABC, BD, F}



Constraints

Anti-monotonic

In ML

Monotonic

In ML

  

freq( f , D) ≥ x

f ≤ P

not(P ≤ f )   

freq( f , D) ≤ x

f ≥ P

not(P ≥ f )

  

f ≤ P

~

P is a positive example   

not( f ≤ P)

~

P is a negative example



Mitchell’s Version Space

 Consider now a conjunctive query

 We want to compute

  

c
1
= freq( f , D) ≥ x

c
2
= freq( f , E) ≤ y

  

sol(a
1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k
) = { f | ∃s ∈S , g ∈G : g ≤ f ≤ s}

where S  and G  are defined w.r.t. a
1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k

  a1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k



Mitchell’s Version Spaces

Is more
general

Infrequent w.r.t. c1
Too specific

S

G

Too frequent w.r.t. c2
Too general

Solutions



Some problems

 There exist conjunctive queries q such that
Sol(q)  is not boundary set representable;
these queries are not safe

 Boundary sets may be infinite

 Or may not be complete

  

Consider ¬(a ≤ f )and let Σ = {a,b}

Then S(¬(a ≤ f )) = {}

Consider (a ≤ f )∧ (b ≤ f ) and let Σ = {a,b,c}

Then G = {ab,ba,acb,bca,accb,bcca,...}



Computing Borders

 Borders completely characterize the set of solutions
for safe queries

 If solution set is finite, then query is safe

 Combination of well-known algorithms to compute
border wrt
 Level wise algorithm by Agrawal et al., Mannila and

Toivonen

 Mitchell’s and Mellish’s version space algorithms

 In our level wise version space algorithm

  a1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k



Is more
general

S

G

Minimum frequency (or anti-monotonic constraint) 

S’…

Levelwise Version Spaces



Dual computation

Is more
general

S

G

min frequency

S’

Swap role of frequent and infrequent fragments 
Expand infrequent ones

Discard frequent ones during search



Level Wise Version Space Algorithm

Is more
general

S

G

G’

max frequency (or monotonic constraint)



Version space tree
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The HIV Data Set

 Developmental Therapeutics Program’s AIDS
Antiviral Screen Database  (http://dtp.nci.nhi.gov)

 One of  the largest public domain databases of this
type

 Measures protection of human CEM cells from HIV-1
infection using a soluble formazan assay

 We retained 41768 compounds (after pre-
processing the whole data set of 43382 ones)
 40282 Confirmed Inactive
 1069 Confirmed Moderately Active
 417 Confirmed Active



Experimental Setup

 Discover patterns that are, statistically significant,
over-represented in the active compounds and
under-represented in the inactive ones

 Minimum frequency in actives 3%, i.e. 13
compounds

 Maximum frequency on inactives computed using χ2

(0.999) and size of classes
 For CM :8; CI : 516

 Matching Smiles and Smarts using Daylight Tool !



#222#110#314#127GGSS====



Discovered Fragments
(Actives vs. Inactives)



AZT (Azidothymidine)

The majority of these fragments
are derivatives of AZT.

Gives insight into the structural
requirements for anti-HIV
activity.

A rediscovery that proves the
principle

Post-processing
Combine fragments ?

::::::NNNCCCncccONNNCCCncncO==−−−−===−−−−=



Use of Fragments : SAR

 Use as fingerprints/descriptors for SAR model
building

 Feed data into your favorite data mining/statistical
package

 Neural Nets
 Decision Trees
 (Logistic) Regression
 Support Vector Machines
 Bayesian Methods
 Principal Component Analysis
 …



Fragment Fingerprints
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Chemical Similarity

 Comparison of different chemical databases
 Characterize differences  among different data sets using

differences in fragments

 Special case :
 Compare one compound against a database (wrt the

fragments that occur)

 Lazar system (Christoph Helma)



Use of Fragments : SAR

 Several  experiments reported on problems
from predictive toxicology, cf. Kramer and
De Raedt, ICML 01

 Best results in combination with SVMs
 2 year rodent carcinogenicity assay (NTP) ~ 70

% ~ 500 compounds
 Mutagenicity (Ames Test) ~ 80% ~ 800

compounds

 Method has proven its use in several
benchmarks problems



Ongoing Work MolFea

 Work with branched fragments instead of linear sequences
 conceptually easy, computationally more expensive

 Use abstractions, e.g. H-bond-donor/acceptor; lipophilic center,
…

 Deriving 3D fragments
 Annotate fragments with 3D information
 Initial implementation works
 Goal : mining for pharmacophores

 Integrate MolFea in existing chemical databases with GUI for
interactive exploration

 Various activities on the solver side
 Applications to strings of proteins, genes, dna



Boolean Inductive Queries

  

Any monotonic or anti-monotonic constraint c,

and any membership function (e.g. f ∈P)

is an atom.

An inductive query is a boolean formula over atoms.

E.g. (f ∈P) and [freq( f , D1) > x  or freq( f , D2) < y] and f < abbbcccc

The query evaluation problem

Given 

        an inductive database

        an inductive query q

Find  a characterisation of sol(q)



Query optimization problem

 Evaluation of a primitive p has  associated
cost c(p)

 Find : a strategy to compute all solutions
whose expected cost is minimal

 Open problem
 Needs estimates for expected number of

solutions
 Database theory ….



Reasoning

  

Claim (subsumption)

Let q
1

and q
2
be two queries such that q

1
|=q

2
.

Then sol(q
1
) ⊆ sol(q

2
)

Background knowledge can also be used in this process.

E.g. freq( f , D) > x and x ≥ y → freq( f , D) > y

E.g. freq( f , D1) > x and D1⊆ D2→ freq( f , D2) > x

E.g. freq( f 2, D) > x and f 1≤ f 2→ freq( f 1, D) > x

Useful :

axioms about sets, generality, number theory

Subsumption is useful in the light of interactive querying

and reuse of  the results of previous queries



Memory organisation

 Consider
 q1 : freq(f,D) > m
 q2: freq(f,D U M) > m  (q1 |= q2)
 q3:freq(f,D) > m OR freq(f,M) > m (q3 |= q2)

 Scenario’s
 q1 answered and stored; q2 asked
 q2 answered and stored; q1 asked

 Keep track of subset relations among pattern sets /
data sets

 Keep track of relations among patterns (generality
structure) within given pattern set



What can we identify ?

 Pattern domain
 Language of patterns

 (e.g., itemsets, association rules, sequences, graphs,
dependencies, decision trees, clusters)

 Evaluation functions
 (e.g., frequency, closures, generality, validity, accuracy)

 Primitive constraints
 (e.g., minimal and maximal frequency, freeness,

syntactic constraints, minimal accuracy)

 DM  settings
 local pattern mining (as here)



Other settings

 Given
 Database D
 Language of patterns L
 Convex scoring function s

 Find: k patterns p in L whose score s(p,D) is
maximal

 Convex criteria allows for branch-and-bound
algorithm



Branch-and-bound

 Consider the following task
 two data sets D1 and D2
 find patterns p such that

 d(p) = freq(p,D1) – freq(p,D2) and d(p) > x  or d(p) is maximal
 let’s assume absolute frequencies

 Property
 For any pattern q that is more specific than p,  we have that

d(q) ≤ freq(p,D1)
 So, knowledge about the frequencies of p imposes an (upper)

bound on d(q) for any more specific pattern q
 This bound can be used for pruning together with the demand

of maximality or the constraint x < d(q)
 optimal, k best, specific bound



Principles

 Morishita et al. have shown that this works
for
 significant patterns using chi-square test,

entropy gain, gini-index

 have also shown that it can be paralellized

 impressive experiments

 Extended towards multiple dimensions by
Zimmermann-De Raedt



Constraint-Based Clustering

 Queries generate data sets rather than patterns (work by
Albrecht Zimmermann)

 Imagine constraints on data sets instead of on patters
 E.g.,   insame(e1,e2)
 E.g.,   indiff(e1,e2)
 freq(p,C1) > x and freq(p,C2) < y and …
 card(C1) > y
 now p is given and the Ci are being queried

 Mathematical programming
 reformulate constraints +
 optimization criterion
 Problem : non-linearity



Where to go from here ?

 Other forms of tasks ?
 Clustering (some initial works exist)

 Formulate constraints on no. of desired clusters, and cluster
membership

 Prediction
 Some approaches to decision tree learning exist

 Other forms of algorithms ?
 Instead of “all solutions” find “best” or “plausible” solutions
 Approximation/heuristic algorithms
 Cf. constraint programming

 Integration in databases
 Has received some attention for SQL, LDL, relational

algebra though much of it as syntactic sugar



Conclusions

 Constraint based mining
 Inductive queries
 Various types / problems / approaches
 Largely local pattern mining

 Illustration of use
 Molecular feature mining as an appli

 Many remaining open problems and
opportunities for research


