
Constraint-Based Data Mining and an
Application in Molecular Feature Mining

Luc De Raedt
Chair of Machine Learning and Natural
Language Processing

Albert-Ludwigs-University Freiburg



Lee Sau Dan, Christoph Helma, Manfred
Jaeger, Stefan Kramer, Heikki Mannila

Joint work with



Three Parts

 Introduction to Inductive Databases
 Inductive Database Systems

 MolFea : Mining features in Molecules

 Constraint Based Mining
 Integrate data mining with databases
 Querying for patterns using constraints



Inductive databases

 Data mining
 search for interesting and understandable patterns in data

 State-of-the-art in data mining ~ databases in the
early days

 A theory of data mining is lacking

 View by Iemielinski and Mannila (CACM 96)
 Make first class citizens out of patterns

 Query not only the data but also the patterns

 Tightly integrate data mining and databases



Inductive querying

 The need to actively mine / analyze scientific
databases in biology, chemistry
 “Understandable” patterns needed
 Scientist wants control of mining process
 Constraint based mining

 Constraints specify patterns of interest
 E.g. find all patterns that occur in at least 30 % the

actives and at most 3% of the inactives and contain a
benzene ring

 Mining becomes a querying process
 «There is no such thing as real discovery, just a matter of the

expressive power of the query languages» Iemielinski & Mannila, CACM

96



Molecular Feature Mining

 What ?
 Find fragments (substructures) of interest in sets

of molecules

 Why ?
 Discover new knowledge
 Use in predictive models

 SAR (Structure Activity Relationship)



Molecules and Fragments

 2D-structure
 essentially Graphs

 Fragments
 substructres
 We : linear fragments
 Sequence of atoms and bonds

 Linear fragments
 ‚o‘, ‚c‘, ‚cl‘, ‚n‘, ‘s‘,... denote

elements
 ‚-‘  ... single bond

‚=‚ ... double bond
‚#‘ ... triple bond
‚:‘ ... aromatic bond

 (hydrogens implicit)

 Smarts encoding

‚O-c:c:c:c-Cl‘



Constraint-based Data Mining

 What ?
 Use constraints to specify which

fragments/patterns are interesting
 E.g.  Frequency and syntax

 Why ?
 Declarative Querying
 Interactive Process
 Inductive database idea



Constraint-based data mining

 Generality
 One fragment is more general  than another one if it is a

substructure of the other one

 Notation : g ≤ s (g is more general than s; i.e. g will match a
graph/string whenever s does)

 Graphs : ~ subgraph relationship

 Strings : substring / subsequence relationship
 E.g. aabbcc is more general than ddaabbccee (substring)

 E.g. abc is more general than aabbcc ( subsequence)

 (Item)sets : subset relation, e.g. {a,b} subset {a,b,c}



Search Space for Strings

  

ε
a   b

aa   ab   ba  bb

aaa   aab   aba   baa   abb   bab   bba   bbb

...

  

Every string has max two fathers

Observe that Σ*  is not a lattice !

mgg  can contain more than element

mgs may be infinite



Primitives

 Generality MolFea Symmetry !
 g is equivalent to s  (syntactic variants) only when they are a

reversal of one another
 E.g. ‚C-O-S' and ‚S-O-C' denote the same substructure

 g  is more general than s if and only if g is a subsequence of s or g
is a subsequence of the reversal of s

 E.g. ‚Cl-O-S' ≤ ‚Cl-O-S-c:c:c'
 E.g., ‚O-Cl' ≤ ‚Cl-O-S'

 Frequency of a fragment f on a data set D
 The percentage of data points in D that f occurs in
 E.g let f be aa and let D={abaa,acc, caa}; freq(f,D) = .66=2/3



Primitive Constraints

 f ≤  P, P ≤ f, not (f ≤ P) and not (P ≤ f):
f ... unknown target fragment,
P ... a specific fragment
e.g. abbaa  ≤  f

 freq(f, D)
relative frequency of a fragment f  on a data set D

 freq(f, D1) ≥ t, freq(f, D2) ≤ t,
t ... positive real number between 0 and 1
D1, D2 ... Data sets
e.g.  freq(f, Pos) ≥ 0.20



Example query

 Let E1 = {aabbcc,abbc,bb}

 Let E2 = {abc,bc,cc}

 freq(f,E1) ≥ 2 and freq(f,E2) = 0  and “a “ < f

 Solutions : abb and abbc



Example Queries

 (`N-O'≤ f) ∧
(freq(f, Act) ≥ 0.1) ∧
(freq(f, Inact) ≤ 0.01) 

 not(‚F' ≤ f) ∧ not (‚Cl' ≤ f) ∧
not (‚Br' ≤ f) ∧ not (‚I' ≤ f) ∧
(freq(f, Act) ≥ 0.05) ∧
(freq(f, Inact) ≤ 0.02)

 Queries are conjunctions of primitive constraints



Representing Solutions

 Traditional min. frequency constraint
 Let c be freq(f, Act) ≥ x

 c satisfies Anti Monotonicity property
  If we have a fragment g ≤ s,

ν Then if s is a solution then g is a solution as well

 Imposes a lower border S=max(Sol) on the space of
solutions



A String Example

freq(f,D) ≥ 2 where D=
 

ABCD BDEF

ABDF ABCF

 

ε
A B C D F

AB BC BD

ABC

  Characterized by S = {ABC, BD, F}= max(Sol)

  

Consider E

E is not frequent,

Therefore no string containing E  is frequent

  

Consider ABC

ABC is frequent

Therefore all substrings of ABC  are frequent



Another String Example

Let f ≤    ABD

 

ε
A B D

AB BD

ABD

  Characterized by S = {ABD}= max(Sol)



Representing Solutions

 Traditional max frequency constraint
 Let c be freq(f, Act) < x

 c satisfies Monotonicity property
  If we have a fragment g ≤ s,

ν Then if g is  a solution then s is a solution as well

 Imposes an upper border G=min(Sol) on the space of
solutions



A String Example

Consider “B” ≤ f and freq(f,D) ≥ 2 with D=
 

ABCD BDEF

ABDF ABCF

 

ε
A B C D F

AB BC BD

ABC
  Characterized by S = {ABC}

  and G = {B}

 

B

AB BC

ABC

  Characterized by S = {ABC, BD, F}



Constraints

Anti-monotonic

In ML

Monotonic

In ML

  

freq( f , D) ≥ x

f ≤ P

not(P ≤ f )   

freq( f , D) ≤ x

f ≥ P

not(P ≥ f )

  

f ≤ P

~

P is a positive example   

not( f ≤ P)

~

P is a negative example



Mitchell’s Version Space

 Consider now a conjunctive query

 We want to compute

  

c
1
= freq( f , D) ≥ x

c
2
= freq( f , E) ≤ y

  

sol(a
1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k
) = { f | ∃s ∈S , g ∈G : g ≤ f ≤ s}

where S  and G  are defined w.r.t. a
1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k

  a1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k



Mitchell’s Version Spaces

Is more
general

Infrequent w.r.t. c1
Too specific

S

G

Too frequent w.r.t. c2
Too general

Solutions



Some problems

 There exist conjunctive queries q such that
Sol(q)  is not boundary set representable;
these queries are not safe

 Boundary sets may be infinite

 Or may not be complete

  

Consider ¬(a ≤ f )and let Σ = {a,b}

Then S(¬(a ≤ f )) = {}

Consider (a ≤ f )∧ (b ≤ f ) and let Σ = {a,b,c}

Then G = {ab,ba,acb,bca,accb,bcca,...}



Computing Borders

 Borders completely characterize the set of solutions
for safe queries

 If solution set is finite, then query is safe

 Combination of well-known algorithms to compute
border wrt
 Level wise algorithm by Agrawal et al., Mannila and

Toivonen

 Mitchell’s and Mellish’s version space algorithms

 In our level wise version space algorithm

  a1
∧ ...∧ a

n
∧ m

1
∧ ...∧ m

k



Is more
general

S

G

Minimum frequency (or anti-monotonic constraint) 

S’…

Levelwise Version Spaces



Dual computation

Is more
general

S

G

min frequency

S’

Swap role of frequent and infrequent fragments 
Expand infrequent ones

Discard frequent ones during search



Level Wise Version Space Algorithm

Is more
general

S

G

G’

max frequency (or monotonic constraint)



Version space tree
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The HIV Data Set

 Developmental Therapeutics Program’s AIDS
Antiviral Screen Database  (http://dtp.nci.nhi.gov)

 One of  the largest public domain databases of this
type

 Measures protection of human CEM cells from HIV-1
infection using a soluble formazan assay

 We retained 41768 compounds (after pre-
processing the whole data set of 43382 ones)
 40282 Confirmed Inactive
 1069 Confirmed Moderately Active
 417 Confirmed Active



Experimental Setup

 Discover patterns that are, statistically significant,
over-represented in the active compounds and
under-represented in the inactive ones

 Minimum frequency in actives 3%, i.e. 13
compounds

 Maximum frequency on inactives computed using χ2

(0.999) and size of classes
 For CM :8; CI : 516

 Matching Smiles and Smarts using Daylight Tool !



#222#110#314#127GGSS====



Discovered Fragments
(Actives vs. Inactives)



AZT (Azidothymidine)

The majority of these fragments
are derivatives of AZT.

Gives insight into the structural
requirements for anti-HIV
activity.

A rediscovery that proves the
principle

Post-processing
Combine fragments ?

::::::NNNCCCncccONNNCCCncncO==−−−−===−−−−=



Use of Fragments : SAR

 Use as fingerprints/descriptors for SAR model
building

 Feed data into your favorite data mining/statistical
package

 Neural Nets
 Decision Trees
 (Logistic) Regression
 Support Vector Machines
 Bayesian Methods
 Principal Component Analysis
 …



Fragment Fingerprints
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Chemical Similarity

 Comparison of different chemical databases
 Characterize differences  among different data sets using

differences in fragments

 Special case :
 Compare one compound against a database (wrt the

fragments that occur)

 Lazar system (Christoph Helma)



Use of Fragments : SAR

 Several  experiments reported on problems
from predictive toxicology, cf. Kramer and
De Raedt, ICML 01

 Best results in combination with SVMs
 2 year rodent carcinogenicity assay (NTP) ~ 70

% ~ 500 compounds
 Mutagenicity (Ames Test) ~ 80% ~ 800

compounds

 Method has proven its use in several
benchmarks problems



Ongoing Work MolFea

 Work with branched fragments instead of linear sequences
 conceptually easy, computationally more expensive

 Use abstractions, e.g. H-bond-donor/acceptor; lipophilic center,
…

 Deriving 3D fragments
 Annotate fragments with 3D information
 Initial implementation works
 Goal : mining for pharmacophores

 Integrate MolFea in existing chemical databases with GUI for
interactive exploration

 Various activities on the solver side
 Applications to strings of proteins, genes, dna



Boolean Inductive Queries

  

Any monotonic or anti-monotonic constraint c,

and any membership function (e.g. f ∈P)

is an atom.

An inductive query is a boolean formula over atoms.

E.g. (f ∈P) and [freq( f , D1) > x  or freq( f , D2) < y] and f < abbbcccc

The query evaluation problem

Given 

        an inductive database

        an inductive query q

Find  a characterisation of sol(q)



Query optimization problem

 Evaluation of a primitive p has  associated
cost c(p)

 Find : a strategy to compute all solutions
whose expected cost is minimal

 Open problem
 Needs estimates for expected number of

solutions
 Database theory ….



Reasoning

  

Claim (subsumption)

Let q
1

and q
2
be two queries such that q

1
|=q

2
.

Then sol(q
1
) ⊆ sol(q

2
)

Background knowledge can also be used in this process.

E.g. freq( f , D) > x and x ≥ y → freq( f , D) > y

E.g. freq( f , D1) > x and D1⊆ D2→ freq( f , D2) > x

E.g. freq( f 2, D) > x and f 1≤ f 2→ freq( f 1, D) > x

Useful :

axioms about sets, generality, number theory

Subsumption is useful in the light of interactive querying

and reuse of  the results of previous queries



Memory organisation

 Consider
 q1 : freq(f,D) > m
 q2: freq(f,D U M) > m  (q1 |= q2)
 q3:freq(f,D) > m OR freq(f,M) > m (q3 |= q2)

 Scenario’s
 q1 answered and stored; q2 asked
 q2 answered and stored; q1 asked

 Keep track of subset relations among pattern sets /
data sets

 Keep track of relations among patterns (generality
structure) within given pattern set



What can we identify ?

 Pattern domain
 Language of patterns

 (e.g., itemsets, association rules, sequences, graphs,
dependencies, decision trees, clusters)

 Evaluation functions
 (e.g., frequency, closures, generality, validity, accuracy)

 Primitive constraints
 (e.g., minimal and maximal frequency, freeness,

syntactic constraints, minimal accuracy)

 DM  settings
 local pattern mining (as here)



Other settings

 Given
 Database D
 Language of patterns L
 Convex scoring function s

 Find: k patterns p in L whose score s(p,D) is
maximal

 Convex criteria allows for branch-and-bound
algorithm



Branch-and-bound

 Consider the following task
 two data sets D1 and D2
 find patterns p such that

 d(p) = freq(p,D1) – freq(p,D2) and d(p) > x  or d(p) is maximal
 let’s assume absolute frequencies

 Property
 For any pattern q that is more specific than p,  we have that

d(q) ≤ freq(p,D1)
 So, knowledge about the frequencies of p imposes an (upper)

bound on d(q) for any more specific pattern q
 This bound can be used for pruning together with the demand

of maximality or the constraint x < d(q)
 optimal, k best, specific bound



Principles

 Morishita et al. have shown that this works
for
 significant patterns using chi-square test,

entropy gain, gini-index

 have also shown that it can be paralellized

 impressive experiments

 Extended towards multiple dimensions by
Zimmermann-De Raedt



Constraint-Based Clustering

 Queries generate data sets rather than patterns (work by
Albrecht Zimmermann)

 Imagine constraints on data sets instead of on patters
 E.g.,   insame(e1,e2)
 E.g.,   indiff(e1,e2)
 freq(p,C1) > x and freq(p,C2) < y and …
 card(C1) > y
 now p is given and the Ci are being queried

 Mathematical programming
 reformulate constraints +
 optimization criterion
 Problem : non-linearity



Where to go from here ?

 Other forms of tasks ?
 Clustering (some initial works exist)

 Formulate constraints on no. of desired clusters, and cluster
membership

 Prediction
 Some approaches to decision tree learning exist

 Other forms of algorithms ?
 Instead of “all solutions” find “best” or “plausible” solutions
 Approximation/heuristic algorithms
 Cf. constraint programming

 Integration in databases
 Has received some attention for SQL, LDL, relational

algebra though much of it as syntactic sugar



Conclusions

 Constraint based mining
 Inductive queries
 Various types / problems / approaches
 Largely local pattern mining

 Illustration of use
 Molecular feature mining as an appli

 Many remaining open problems and
opportunities for research


