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[Three Parts

Introduction to Inductive Databases
Inductive Database Systems
MolFea : Mining features in Molecules

Constraint Based Mining
Integrate data mining with databases
Querying for patterns using constraints



Inductive databases

Data mining
search for interesting and understandable patterns in data

State-of-the-art in data mining ~ databases in the
early days

A theory of data mining is lacking

View by lemielinski and Mannila (CACM 96)

Make first class citizens out of patterns
Query not only the data but also the patterns
Tightly integrate data mining and databases



Inductive querying

The need to actively mine / analyze scientific
databases in biology, chemistry

“Understandable” patterns needed
Scientist wants control of mining process

Constraint based mining
Constraints specify patterns of interest

E.g. find all patterns that occur in at least 30 % the
actives and at most 3% of the inactives and contain a
benzene ring

Mining becomes a querying process

« There is no such thing as real discovery, just a matter of the

expressive power of the query languages» lemielinski & Mannila, CACM
96



Molecular Feature Mining

What ?

Find fragments (substructures) of interest in sets
of molecules

Why ? /O/

Discover new knowledge

Use in predictive models
SAR (Structure Activity Relationship)

Cl

M
H- ™H



Molecules and Fragments

H- ™H

Cl

2D-structure

essentially Graphs
Fragments

substructres

We : linear fragments

Sequence of atoms and bonds
Linear fragments

0, ¢, cl, n ‘s’ ... denote
elements

- ... single bond
,=, ... double bond
# ... triple bond

. ... aromatic bond

(hydrogens implicit)
Smarts encoding



Constraint-based Data Mining

What ?

Use constraints to specify which
fragments/patterns are interesting

E.g. Frequency and syntax
Why ?

Declarative Querying

Interactive Process

Inductive database idea



Constraint-based data mining

Generality

One fragment is more general than another one if it is a
substructure of the other one

Notation : g < s (g is more general than s; i.e. g will match a
graph/string whenever s does)

Graphs : ~ subgraph relationship

Strings : substring / subsequence relationship
E.g. aabbcc is more general than ddaabbccee (substring)
E.g. abc is more general than aabbcc ( subsequence)

(Item)sets : subset relation, e.g. {a,b} subset {a,b,c}




Search Space for Strings

E
a b
aa ab ba bb
aaa aab aba baa abb bab bba bbb

Every string has max two fathers
Observe that " is not a lattice !
mgg can contain more than element

mgs may be infinite



Primitives

Generality MolFea Symmetry !
g is equivalent to s (syntactic variants) only when they are a
reversal of one another
E.g. ,C-O-S"and , S-O-C’ denote the same substructure

g is more general than s if and only if g is a subsequence of s or g
is a subsequence of the reversal of s
E.g. ,CI-O-S'<,CI-O-S-c:c:c'
E.g.,,0-ClI'<,CI-O-S'
Frequency of a fragment f on a data set D
The percentage of data points in D that f occurs in

E.g let f be aa and let D={abaa,acc, caa}; freq(f,D) = .66=2/3




Primitive Constraints

f< P, P<f, not (f<P)and not (P <1):
f ... unknown target fragment,

P ... a specific fragment

e.g. abbaa < f

freq(f, D)

relative frequency of a fragment f on a data set D
freq(f, D1) > t, freq(f, D2) < {,

t ... positive real number between 0 and 1

D1, D2 ... Data sets

e.g. freq(f, Pos) > 0.20



[Example query

Let E1 = {aabbcc,abbc,bb}

Let E2 = {abc,bc,cc}

freq(f,E1) > 2 and freq(f,E2) =0 and "a " <f
Solutions : abb and abbc



Example Queries

(‘N-O'<1) A
(freq(f, Act) > 0.1) A
(freq(f, Inact) < 0.01)

not(,F'<f) A not (,ClI'<1) A
not (,Br'<f) A not (,I'<1) A
(freq(f, Act) > 0.05) A
(freq(f, Inact) < 0.02)

Queries are conjunctions of primitive constraints



Representing Solutions

Traditional min. frequency constraint
Let c be freq(f, Act) > x

c satisfies Anti Monotonicity property
If we have a fragment g < s,
Then if s is a solution then g is a solution as well

Imposes a lower border S=max(Sol) on the space of
solutions




[A String Example

ABCD BDEF
freq(f,D) > 2 where D=
ABDF  ABCF
E Consider E

E is not frequent,

A B C D F Therefore no string containing £ 1s frequent
AB B C BD Consider ABC

ABC 1s frequent
A B C Therefore all substrings of ABC are frequent

Characterized by S ={ABC, BD, F'} = max(So/)



[Another String Example

Letf< ABD

E
A B D
AB BD
ABD

Characterized by S = {ABD} = max(So/)



Representing Solutions

Traditional max frequency constraint

Let ¢ be freq(f, Act) < x

c satisfies Monotonicity property
If we have a fragment g < s,
Then if g is a solution then s is a solution as well

Imposes an upper border G=min(Sol) on the space of
solutions




[A String Example ABCD  BDEF
ABDF  ABCF

Consider “B” <fand freq(f,D) > 2 with D=

E
A B C D F AB BC
AB BC BD ABC
ABC

Characterized by S = {ABC}
Characterized by S = {ABC,BD, F'} and G = {B}



[Constraints

Anti-monotonic

freq(f,D)=x
f<P

not(P< f)

In ML
f<p

~~

P 1s a positive example

Monotonic

freq(f,D)<x
f=zP

not(P=f)

In ML
not(f < P)

~~

P 1s a negative example



[Mitchell’s Version Space

Consider now a conjunctive query

¢, = freq(f,D)=x

Cll VANPTVAN Cln /\I”I”l1 /\.../\mk
c, = freq(f,E)<y
We want to compute

sol(a n..na Anm A.Anm)={f|dseS,geCG:g< f<s}

where S and G are defined w.r.t. a, A...ANA AL A.ANL



[ Mitchell’'s Version Spaces

".: tht 02

IS more
general




[Some problems

There exist conjunctive queries g such that
Sol(q) is not boundary set representable;
these queries are not safe

Boundary sets may be infinite
Or may not be complete

Consider —(a < f)and let X = {a,b}

Then S(—(a < 1)) ={}

Consider (a < f)A(b< f)and let X ={a,b,c}
Then G = {ab,ba,ach,bca,acch,bcca,...}



Computing Borders

Borders completely characterize the set of solutions
for safe queries

If solution set is finite, then query is safe
Combination of well-known algorithms to compute

border wrt

Level wise algorithm by Agrawal et al., Mannila and
Toivonen

Mitchell's and Mellish’s version space algorithms
In our level wise version space algorithm

a N.A\Nd ANm N..\m
1 n 1 k



[ Levelwise Version Spaces

Minimum frequency (or anti-monotonic constraint)

%
/ |
S mMore

/\A
general



[Dual computation

S’ Is more
general
S




[Level Wise Version Space Algorithm

max frequency (or monotonic constraint)

G

/\‘A N\
‘/\ £ G’ Is more

general

S






The HIV Data Set

Developmental Therapeutics Program’s AIDS
Antiviral Screen Database ( )

One of the largest public domain databases of this
type

Measures protection of human CEM cells from HIV-1
infection using a soluble formazan assay

We retained 41768 compounds (after pre-
processing the whole data set of 43382 ones)
40282 Confirmed Inactive

1069 Confirmed Moderately Active
417 Confirmed Active



Experimental Setup

Discover patterns that are, statistically significant,
over-represented in the active compounds and
under-represented in the inactive ones

Minimum frequency in actives 3%, i.e. 13
compounds

Maximum frequency on inactives computed using y?
(0.999) and size of classes
For CM :8; Cl : 516

Matching Smiles and Smarts using Daylight Tool !






Discovered Fragments
(Actives vs. Inactives)
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AZT (Azidothymidine)

HO

The majority of these fragments
are derivatives of AZT.

Gives insight into the structural
requirements for anti-HIV
activity.

A rediscovery that proves the
principle

Post-processing
Combine fragments ?



Use of Fragments : SAR

Use as fingerprints/descriptors for SAR model
building
Feed data into your favorite data mining/statistical
package

Neural Nets

Decision Trees

(Logistic) Regression

Support Vector Machines

Bayesian Methods

Principal Component Analysis



[Fragment Fingerprints
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Figure 4: The 20 strongest activating fragments for Sa/monella mutagenicity de-
rived from linear Support Vector Machines. Fragments are written in SMARTS
notation: uppercase letters: aliphatic atoms, lowercase letters: aromatic atoms, -
single bond, : aromatic bond. = double bond; baseline value: -0.24



Figure 6 Mutagenic compounds containing the fragment
C:C:C:C:C:C:C:C:C. Atoms matching this fragment are marked n
vellow.
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Figure 5: The 20 strongest deactivating fragments for bacterial mutagenicity de-
rived from linear Support Vector Machines. Fragments are written in SMARTS
notation: uppercase letters: aliphatic atoms. lowercase letters: aromatic atoms, -
single bond, : aromatic bond, = double bond: baseline value: -0.24



Original Structure Modification 1
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Chemical Similarity

Comparison of different chemical databases

Characterize differences among different data sets using
differences in fragments

Special case :

Compare one compound against a database (wrt the
fragments that occur)

Lazar system (Christoph Helma)



Use of Fragments : SAR

Several experiments reported on problems
from predictive toxicology, cf. Kramer and
De Raedt, ICML 01

Best results in combination with SVMs

2 year rodent carcinogenicity assay (NTP) ~ 70
% ~ 500 compounds

Mutagenicity (Ames Test) ~ 80% ~ 800
compounds

Method has proven its use in several
benchmarks problems



Ongoing Work MolFea

Work with branched fragments instead of linear sequences
conceptually easy, computationally more expensive
Use abstractions, e.g. H-bond-donor/acceptor; lipophilic center,

Deriving 3D fragments
Annotate fragments with 3D information
Initial implementation works
Goal : mining for pharmacophores
Integrate MolFea in existing chemical databases with GUI for
Interactive exploration
Various activities on the solver side

Applications to strings of proteins, genes, dna



Boolean Inductive Queries

Any monotonic or anti-monotonic constraint c,
and any membership function (e.g. f € P)

1S an atom.

An inductive query 1s a boolean formula over atoms.
E.g. (f € P) and [freq( f,D1)> x or freq(f,D2)< y]and f < abbbcccc

The query evaluation problem
Given

an inductive database

an inductive query ¢

Find a characterisation of so/(q)



[Query optimization problem

Evaluation of a primitive p has associated
cost c(p)

Find : a strategy to compute all solutions
whose expected cost is minimal

Open problem

Needs estimates for expected number of
solutions

Database theory ....



Reasoning

Claim (subsumption)

Let g, and g,be two queries such that g [=g, .
Then sol(q,) < sol(q,)

Background knowledge can also be used in this process.
E.g. freq(f,D)>x andx =y — freq(f,D)>y

E.g. freq( f,D1)>x and D1 < D2 — freq(f,D2)> x
E.g. freq(f2,D)>x and f1< f2 — freq(f1,D)>x

Useful :

axioms about sets, generality, number theory

Subsumption is useful in the light of interactive querying

and reuse of the results of previous queries



Memory organisation

Consider
g1 : freq(f,D) > m
g2: freq(f,D U M) >m (q1 |= g2)
q3:freq(f,D) > m OR freq(f,M) > m (g3 |= 92)
Scenario’s
g1 answered and stored; q2 asked
g2 answered and stored; q1 asked

Keep track of subset relations among pattern sets /
data sets

Keep track of relations among patterns (generality
structure) within given pattern set



What can we identify ?

Pattern domain

Language of patterns

(e.g., itemsets, association rules, sequences, graphs,
dependencies, decision trees, clusters)

Evaluation functions
(e.g., frequency, closures, generality, validity, accuracy)

Primitive constraints

(e.g., minimal and maximal frequency, freeness,
syntactic constraints, minimal accuracy)

DM settings

local pattern mining (as here)



[Other settings

Given
Database D
Language of patterns L
Convex scoring function s

Find: k patterns p in L whose score s(p,D) is
maximal

Convex criteria allows for branch-and-bound
algorithm



Branch-and-bound

Consider the following task
two data sets D1 and D2

find patterns p such that
d(p) = freq(p,D1) — freq(p,D2) and d(p) > x or d(p) is maximal
let’'s assume absolute frequencies

Property

For any pattern g that is more specific than p, we have that
d(q) = freq(p,D1)

So, knowledge about the frequencies of p imposes an (upper)
bound on d(q) for any more specific pattern q

This bound can be used for pruning together with the demand
of maximality or the constraint x < d(q)

optimal, k best, specific bound



Principles

Morishita et al. have shown that this works
for

significant patterns using chi-square test,
entropy gain, gini-index

have also shown that it can be paralellized
Impressive experiments

Extended towards multiple dimensions by
Zimmermann-De Raedt



Constraint-Based Clustering

Queries generate data sets rather than patterns (work by
Albrecht Zimmermann)
Imagine constraints on data sets instead of on patters
E.g., insame(el,e2)
E.g., indiff(e1,e2)
freq(p,C1) > x and freq(p,C2) <y and ...
card(C1) >y
now p is given and the Ci are being queried

Mathematical programming
reformulate constraints +
optimization criterion
Problem : non-linearity



Where to go from here ?

Other forms of tasks ?

Clustering (some initial works exist)

Formulate constraints on no. of desired clusters, and cluster
membership

Prediction
Some approaches to decision tree learning exist
Other forms of algorithms ?
Instead of “all solutions” find “best” or “plausible” solutions
Approximation/heuristic algorithms
Cf. constraint programming

Integration in databases

Has received some attention for SQL, LDL, relational
algebra though much of it as syntactic sugar



[Conclusions

Constraint based mining
Inductive queries
Various types / problems / approaches
Largely local pattern mining
lllustration of use
Molecular feature mining as an appli

Many remaining open problems and
opportunities for research



