

Toon Calders University of Antwerp

Summary

Frequent Itemset Mining

Algorithms

- Constraint Based Mining
- Condensed Representations

Frequent Itemset Mining

Market-Basket Analysis

Frequent Itemset Mining

support(I): number of transactions "containing I"

Support(BC) = 3Support(ACD) = 2

Frequent Itemset Mining Problem

Given D, minsup Find all sets I with support(I) \geq minsup


```
{}, A, B, C, D,
AC, AD, BC, BD, CD,
ACD
```

Why?

- Important component in mining algorithms
- Sufficient statistics for interestingness measures
 - \Box Confidence X \rightarrow Y : Support(XY)/Support(X)

□ Contingency tables (correlation, X²)

Summary

Frequent Itemset Mining

Algorithms

- Constraint Based Mining
- Condensed Representations

Algorithms

There exist hundreds of algorithms that solve FIM (or related problems)

AIS, Apriori, AprioriTID, AprioriHybrid, FPGrowth, FPGrowth*, Eclat, dEclat, Pincersearch, ABS, DCI, kDCI, LCM, AIM, PIE, ARMOR, AFOPT, COFI, Patricia, MAXMINER, MAFIA, NDI-ALL, ...

Algorithms

- There exist hundreds of algorithms that solve FIM (or related problems)
- Concentrate on the most important pruning principle:
 - Monotonicity
- and the two main search strategies:
 - Breadth-first
 - Depth-first

Monotonicity Principle

- If I \subseteq J, then support(I)≥support(J)
- Therefore, if I is infrequent, then all its supersets are infrequent as well.
- All FIM algorithms rely heavily on this principle to prune large parts of the search space.

Levelwise Algorithm

- Exploits monotonicity as much as possible.
- Search Space is traversed bottom-up, level by level
- Support of an itemset is only counted in the database if all its subsets were frequent.

TID	Α	В	С	D	
1	0	1	1	0	
2	0	1	1	0	
3	1	0	1	1	
4	1	1	1	1	
5	0	1	0	1	

Depth-First Algorithms

Find all frequent itemsets

Breadth-First vs Depth-First

Depth-first outperformes breadth-first
 Number of frequent itemsets is very high
 Database is relatively small

- Breadth-first outperformes depth-first
 - Number of frequent sets is small
 - □ Database is large
- Differences usually very small

Summary

Frequent Itemset Mining

Algorithms

Constraint Based Mining

Condensed Representations

Mining With Constraints

Reduce output size, user sets focus

 itemsets of size > 5
 sets of products with cost less than 10 EUR
 sets that contain A, B, or C.
 sets that are frequent in dataset D₁, but infrequent in D₂

Mining With Constraints

Types of constraints

 (Anti-)Monotone,
 Succinct
 Convertible

 Two Approaches

 Pushing constraints into the mining algorithm
 Changing the Database

Types of Constraints

Anti-monotone
 Support, size < 10, ...

Types of Constraints

Monotone

□ Cost >10EUR, Contains A, B, or C, …

Types of Constraints

Succinct

- Can be expressed using minus and union on a fixed number of powersets
 - E.g., Contains A or B, but not C: 2^{I-C} 2^{I-AB}
- □ Can be generated efficiently
- Convertible anti-monotone
 - □ Anti-Monotone w.r.t. prefix-order
 - E.g. avg(I.price)<10 EUR when ordered ascending by price.

Mining With Constraints

Two approaches:

- Pushing constraints deep in data mining algorithm
- □ Changing database such that
 - Support of itemsets satisfying the constraint does not change
 - The support of itemsets that do not satisfy the constraint decreases

Pushing Constraints

Trade-off

- Pushing monotone constraints
- □ vs. anti-monotone pruning
- Not always better to push monotone constraints

□ E.g. Size > 10 ...

Changing the Database

- ExAnte Algorithm
 - Exploit Monotone and Anti-monotone constraints
 - A transaction that does not satisfy a monotone constraint will not contribute to any itemset satisfying the constraints
 - E.g. constraint "size > 10": every transaction of size < 10 can be thrown away!</p>

Changing the Database

Summary

Frequent Itemset Mining

Algorithms

- Constraint Based Mining
- Condensed Representations

Condensed Representations

- Sometimes, the output of frequent set mining remains too large:
 - □ Huge number of items
 - □ Highly correlated
 - □ High support items
- Hence, instead of mining all itemsets
 Condensed representation

Condensed Representations

Closed sets

- Divide frequent itemsets into equivalence classes
- Two itemsets are equivalent if they occur in the same transactions
- Closed set: maximal element in an equivalence class

Closed Itemsets

- All sets in the same equivalence class have the same support
 - □ Occur in the same transactions
- Maximal element in an equivalence class is unique
 - If two itemsets occur in the same transactions, then so does their union

Closed Itemsets

- Has nice mathematical properties
 Closed sets form a lattice
 Galois connection
- Efficient algorithms to find them
- Based on the closed sets, it is easy to find the support of the other itemsets.

Closed Itemsets

Interesting class of patterns

 Maximal frequent itemsets are closed sets
 Highest correlation between items
 Strongest association rules

 Significant reduction of number of itemsets

 Especially with small number of large transactions

Non-Derivable Itemsets

- Based on redundancies
 How do supports interact?
- What information about unknown supports can we derive from known supports?
 Concise representation: only store relevant part of the supports

Redundancies

Agrawal et al. (Monotonicity)
 □ Supp(AX) ≤ Supp(A)

Boulicaut et al., Lakhal et al. (Free sets)
 If Supp(A) = Supp(AB) (Closed sets)
 Then Supp(AX) = Supp(AXB)

Redundancies

Bykowski, Rigotti (Disjunction-free sets) if Supp(ABC) = Supp(AB) + Supp(AC) – Supp(A), then Supp(ABCX) can be derived from ABX, ACX, AX

The Inclusion – Exclusion Principle

$|A \cup B \cup C| = |A| + |B| + |C|$ - | A \cap B | - | A \cap C | - | B \cap C | + | A \cap B \cap C |

Deduction Rules via Inclusion-Exclusion

- Let A, B, C, ... be items
- Let A' correspond with the set
 - { transaction t | t contains A }
- AB' = A' ∩ B'

Then: Supp(ABC) = | ABC' |

Deduction Rules via Inclusion-Exclusion

Inclusion-exclusion principle:

|A' ∪ B' ∪ C' | = |A'| + |B'| + |C'|
- |AB'| - |AC'| - |BC'|
+ |ABC'|

Thus, since | A' ∪ B' ∪ C' | ≤ n,

$$\begin{split} & \text{Supp}(\text{ABC}) \leq s(\text{AB}) + s(\text{AC}) + s(\text{BC}) \\ & \quad -s(\text{A}) - s(\text{B}) - s(\text{C}) + n \end{split}$$

Complete Set for Supp(ABC)

Derivable Itemsets

Given: Supp(I) for all $I \subset J$ Lower bound on Supp(J) = I Upper bound on Supp(J) = u

Without counting : Supp(J) ∈ [I,u]
 J is a <u>derivable itemset</u> (DI) iff I = u
 We know Supp(J) exactly without counting!

Derivable Itemsets

J derivable itemset:

- No need to <u>count</u> Supp(J)
- No need to <u>store</u> Supp(J)
 - □ We can use the deduction rules

Concise representation:
C = { (J, Supp(J)) | J not derivable from Supp(I), I ⊂ J }

Derivable Itemsets

Theorem (Monotonicity) If $J \subset K$, J derivable, then K derivable.

Moreover:

The width of the interval for J∪{A} is at most <u>half</u> the size of the interval for J

IV. Evaluation --- Theoretical

Interval widths decrease exponentially
 Half each step

 Non-derivable itemset can never be larger than log(|Database|)
 Independent of sparse, dense, ...

Evaluation --- Empirically

Size NDI vs. frequent itemsets

Comparison with Other Concise Reps

PUMSB

PUMSB

Evaluation

- Number of frequent NDIs considerable smaller than number of frequent itemsets
- Algorithm is efficient
 Calculating NDI + deducing DIs often outperforms Apriori

Condensed Representations

Many other representations
 Free sets
 Disjunction-free sets
 Generalized disjunction-free sets
 ...

Closed sets and NDIs provable the smallest ones

Conclusion

- Depth-first vs Breadth-first algorithms for FIM
- Constraint mining to incorporate user focus
 - Pushing constraints vs changing database
- Condensed Representations
 - □ Closed sets
 - Non-Derivable Itemsets

Topics Not Covered ... Parallel algorithms for FIM Incremental FIM Generalized, Quantitative, Multi-level, Fuzzy ARs Coupling FIM with RDBMS Privacy Preserving ARM **Computational Complexity Results** Inverse mining problem Emerging Patterns, jumping emerging patterns Dependency value, X² Lift, gain Block support, tilings,

. . .