Frequent Pattern

Mining

Toon Calders
University of Antwerp

" S
Summary

m Algorithms
m Constraint Based Mining

m Condensed Representations

"
Frequent ltemset Mining

m Market-Basket Analysis

transaction identifier

Tﬁ) A[B|[C | D'

1 0 1 : 0 1< transaction
210 1]1]0
301,01 "

4 |1 | 1

50|10

"
Frequent ltemset Mining

m support(l): number of transactions “containing I’

TIDb| A| B | C | D
1 0 1 : 0 Support(BC) = 3
2 0 1 . 0 Support(ACD) = 2
3 1 0
4 1 1
5 0 1 0

"
Frequent Itemset Mining Problem

Given D, minsup
Find all sets | with support(l) =2 minsup

TID| A | B | C | D . _
minsup=2
1 0 1 1 0
2 | 0 | 1 o| GBLABGD,
AC, AD, BC, BD, CD,
3 1 0 1 1 ACD
4 1 1 1 1
5 | O 1 0

Why?

m Important component in mining algorithms

m Sufficient statistics for interestingness
measures

Confidence X—Y : Support(XY)/Support(X)
Contingency tables (correlation, X?2)

X X
Y s(XY) s(Y) - s(XY)
Y | s(X) - s(XY) | s({}) - s(X) -s(Y) + s(XY)

" S
Summary

m Frequent ltemset Mining

m Constraint Based Mining

m Condensed Representations

" S
Algorithms

m There exist hundreds of algorithms that
solve FIM (or related problems)

AlS, Apriori, AprioriTID, AprioriHybrid,
FPGrowth, FPGrowth*, Eclat, dEclat, Pincer-
search, ABS, DCI, kDCI, LCM, AIM, PIE,
ARMOR, AFOPT, COFI, Patricia,
MAXMINER, MAFIA, NDI-ALL, ...

" S
Algorithms

m There exist hundreds of algorithms that
solve FIM (or related problems)

m Concentrate on the most important
pruning principle:
Monotonicity

and the two main search strategies:
Breadth-first
Depth-first

Monotonicity Principle

m If Icd, then support(l)zsupport(J)

m [herefore, if | is infrequent, then all its
supersets are infrequent as well.

m All FIM algorithms rely heavily on this
principle to prune large parts of the search

space.

Search Space

AB infre

5
I

Levelwise Algorithm

m Exploits monotonicity as much as
possible.

m Search Space is traversed bottom-up,
level by level

m Support of an itemset is only counted in
the database if all its subsets were
frequent.

C| D

TID| A | B

=2

minsup

Candidates

Ao

{}

0|

=2

minsup

B 1

AO

{}

Apriori

1 10| 1 1
12 [0] 1 1 |
3 [1] 0 1
4 11| 1 1
5 |0 110
minsup=2

Vi

| Apriori

1 10| 1 1
2 |0 1 1
[3 [1]0 [1
4 11| 1 1
5 |0 110
minsup=2

L2

1]

| 4

=2

minsup

B3

A 2

{}

1]

| 5

=2

minsup

A 2

{}

TIDIA| B | C | D

1 10| 1 110

2 |0 1 110 . .
3 1] 0|11 Apriori
4 11| 1 1 1

5 |0 10| 1

minsup=2

Candidates
AB AC AD BC BD CD

o TN N T
\/K%N/

\\//

C| D

TID| A | B

=2

minsup

AD 2 BC 3 BD 2 CD 2

AC 2

AB 1

A 2

{}

TID|{A| B | C | D
1 10| 1 110
2 |01 110 . "
311l ol 1] Apriori
4 11| 1 1 1
5 |0 1|01
minsup=2 Candidates

BCD

ﬂ\//\
o

AB 1 AC 2 AD 2 BC 3 BD 2 CD 2

By
A 2 B 4 C 4 D3
\\{}//

TID|A| B | C | D

1 0| 1 110

2 |0 1 110 . -
3 11]0|1] Apriorl
4 (1] 1 1 1

5 |0 10| 1

minsup=2

ACD 2 BCD 1

AB 1 AC 2 AD 2 BC 3 BD 2 CD 2
Y\

\\{}//

Depth-First Algorithms

Find all frequent itemsets

TID|A| B | C | D
1 10| 1 110
2 |0 1 110
3 (1] 0] 1 1
4 | 1| 1 1 1
5 (0] 1 1]0 |1
Find all frequent itemsets, with D Find all frequent itemsets, without D

TD|A| B |C

a b~ 0N -

1 1
1 1
0| 1
1 1
110

© -~ =~ O O

Depth-First Algorithm
TD|A|B|C|D
1 1ol1]1]o0
2 lol 11110
3111011
4 11011111
DB[D] 5 (01|01
TD|A| B | C .
ST o TD|A| B
4 | 1] 1|1
/ 5 ol 1]o0 ; 8 1
N
DB[CD] DB[BD] s 1]0
TD | A TID 4 1111
v
> |1 DB[BC]
4 |1
TID

A.B,C,D
AD, BD, CD
ACD

AC, BC

DB[B]

TID

"
Breadth-First vs Depth-First

m Depth-first outperformes breadth-first
Number of frequent itemsets is very high
Database is relatively small

m Breadth-first outperformes depth-first
Number of frequent sets is small
Database is large

m Differences usually very small

" S
Summary

m Frequent ltemset Mining

m Algorithms

m Condensed Representations

" S
Mining With Constraints

m Reduce output size, user sets focus
itemsets of size > 5
sets of products with cost less than 10 EUR
sets that contain A, B, or C.

sets that are frequent in dataset D,, but
infrequent in D,

Mining With Constraints

m Types of constraints
(Anti-)Monotone,
Succinct
Convertible

m Two Approaches
Pushing constraints into the mining algorithm
Changing the Database

" S
Types of Constraints

m Anti-monotone
C1Support, size < 10, ...

" S
Types of Constraints

m Monotone
1Cost >10EUR, Contains A, B, or C, ...

Types of Constraints

m Succinct

Can be expressed using minus and union on
a fixed number of powersets
= E.g., Contains A or B, but not C: 2/-C — 2I-AB

Can be generated efficiently

m Convertible anti-monotone

Anti-Monotone w.r.t. prefix-order

m E.g. avg(l.price)<10 EUR when ordered ascending
by price.

Mining With Constraints

m [wo approaches:

Pushing constraints deep in data mining
algorithm

Changing database such that

m Support of itemsets satisfying the constraint does
not change

= The support of itemsets that do not satisfy the
constraint decreases

Pushing Constraints

Monotone
+
+ +
A T +
CN T
\-I- L+ Frequency

Anti-monotone

"
Pushing Constraints

m [rade-off

Pushing monotone constraints
vs. anti-monotone pruning
m Not always better to push monotone
constraints
E.g. Size>10 ...

" S
Changing the Database

m ExAnte Algorithm

Exploit Monotone and Anti-monotone
constraints

A transaction that does not satisfy a
monotone constraint will not contribute to any
itemset satisfying the constraints

m E.g. constraint “size > 10": every transaction of
size < 10 can be thrown away!

Changing the Database

minsup = 3 anti-mon.
size 24 monotone

D A B|C|D
1

—_— () d) —

A

(@)
D | = |
A | O >
D | = || C
RN

q D — —_—

"
Summary
m Frequent ltemset Mining

m Algorithms

m Constraint Based Mining

Condensed Representations

m Sometimes, the output of frequent set
mining remains too large:

Huge number of items
Highly correlated
-High support items

m Hence, instead of mining all itemsets
Condensed representation

Condensed Representations

m Closed sets

Divide frequent itemsets into equivalence
classes

Two itemsets are equivalent if they occur in
the same transactions

Closed set: maximal element in an
equivalence class

Closed ltemsets

m All sets in the same equivalence class
have the same support

Occur in the same transactions
m Maximal element in an equivalence class
IS unique

If two itemsets occur in the same transactions,
then so does their union

Closed ltemsets

BCD

ACD

ABCD

0
1

C| D

1
1

0
1

TID| A | B

ABD

ABC

BD

BC

AD

AC

AB

{

Closed ltemsets

m Has nice mathematical properties
Closed sets form a lattice
Galois connection

m Efficient algorithms to find them

m Based on the closed sets, it is easy to find
the support of the other itemsets.

Closed ltemsets

m [nteresting class of patterns
Maximal frequent itemsets are closed sets
Highest correlation between items
Strongest association rules

m Significant reduction of number of itemsets

Especially with small number of large
transactions

Non-Derivable ltemsets

m Based on redundancies
How do supports interact?

m \What information about unknown supports
can we derive from known supports?

Concise representation: only store relevant
part of the supports

Redundancies

m Agrawal et al. (Monotonicity)
Supp(AX) < Supp(A)

m Boulicaut et al., Lakhal et al. (Free sets)

If Supp(A) = Supp(AB) (Closed sets)
Then Supp(AX) = Supp(AXB)

Redundancies

m Bayardo
(MAXMINER)

Supp(ABX) = Supp(AX) — (Supp(X)-Supp(BX))

drop (X, B)

m Bykowski, Rigotti (Disjunction-free sets)

It SUpp(ABC) = Supp(AB) + Supp(AC) —
Supp(A), then Supp(ABCX) can be derived
from ABX, ACX, AX

The Inclusion — Exclusion
Principle

|AuBUC]| = |A|+|B|+]|C|
-|AnB|-|AnC|-|BnC|
+ | AnBNC|

» I
Deduction Rules via Inclusion-
Exclusion

mletA, B, C, ... beitems
m Let A’ correspond with the set
{ transaction t | t contains A }

mAB'=A'nB

m Then: Supp(ABC) = | ABC’ |

" S
Deduction Rules via
Inclusion-Exclusion

m Inclusion-exclusion principle:
|AuB UC| = |Al+|B]+][C]
- |AB’[-|AC’| - [BC|
+ |ABC'|
Thus, since | AuB uC'|<n,

Supp(ABC) < s(AB) + s(AC) + s(BC)

-s(A)—s(B) —s(C) + n

Qi
Complete Set for Supp(ABC)

0 Spgc20

SaBC = SaB o
I Sagc < Sac Monotonicity

Sagc = Sgc

Free, Closed —

Sagc = Sag t Sac— Sa -
2 Sagc = Sagt Sgc— Sy Disjunction-Free

Sagc 2 Sac T Sgc— S
3 Spagc=Sag Tt SactSgc— Sa— Sg— Sctn

" I
Derivable ltemsets

Given: Supp(l) forall | < J
Lower bound on Supp(J) = |
Upper bound on Supp(J) = u

m Without counting : Supp(J) € [l,u]
m J is a derivable itemset (DI) iff | =u
We know Supp(J) exactly without counting!

" I
Derivable ltemsets

J derivable itemset:
m No need to count Supp(J)
m No need to store Supp(J)

We can use the deduction rules

m Concise representation:

C={(J, Supp(J))| J not derivable from
Supp(l), = J}

" S
Derivable ltemsets

If J = K, J derivable, then K derivable.

Moreover:
he width of the interval for JU{A} is

at most half the size of the interval for J

V. Evaluation --- Theoretical

m Interval widths decrease exponentially
Half each step

m Non-derivable itemset can never be larger
than log(|Database|)

Independent of sparse, dense, ...

Evaluation --- Empirically

m Size NDI vs. frequent itemsets

m Comparison with Other Concise Reps

1e+009

1e+008

1e+007

1e+006 |

size

100000 |
10000 |
1000 |

100

PUMSB

| | | # Freqdent —]
#NDI ---x---
X i
S
e |
N
T]
s]
.
S |
| |] | | |
10000 20000 30000 40000 50000 60000 70000
support

FreeRep —+—
Closed ——m—
900000 DFreeRep ---x—--
DFreeGenRep ---%---
NDI -8 -
800000 | .
700000 | .
600000 | .
N 500000 |- .
w
400000 - .
300000 .
200000 | .
100000 ~ .
0
7000 8000 9000 10000 11000 12000 13000 14000 15000

support

PUMSB

Evaluation

m Number of frequent NDIs considerable
smaller than number of frequent itemsets

m Algorithm is efficient

Calculating NDI + deducing Dls often
outperforms Apriori

Condensed Representations

m Many other representations
Free sets
Disjunction-free sets
Generalized disjunction-free sets

m Closed sets and NDlIs provable the
smallest ones

" D
Conclusion

m Depth-first vs Breadth-first algorithms for
FIM

m Constraint mining to incorporate user
focus
Pushing constraints vs changing database
m Condensed Representations
Closed sets
Non-Derivable Iltemsets

Topics Not Covered ...

Parallel algorithms for FIM

Incremental FIM

Generalized, Quantitative, Multi-level, Fuzzy ARs

Coupling FIM with RDBMS

Privacy Preserving ARM

Computational Complexity Results

Inverse mining problem

Emerging Patterns, jumping emerging patterns

Dependency value, X2
Lift, gain
Block support, tilings,

