
Frequent Pattern

Mining

Toon Calders

University of Antwerp

Summary

� Frequent Itemset Mining

� Algorithms

� Constraint Based Mining

� Condensed Representations

Frequent Itemset Mining

� Market-Basket Analysis

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID
transaction

items

transaction identifier

Frequent Itemset Mining

� support(I): number of transactions “containing I”

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

Support(BC) = 3

Support(ACD) = 2

Frequent Itemset Mining Problem

Given D, minsup

Find all sets I with support(I) ≥ minsup

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID
minsup=2

{}, A, B, C, D,

AC, AD, BC, BD, CD,

ACD

Why?

� Important component in mining algorithms

� Sufficient statistics for interestingness

measures

�Confidence X→Y : Support(XY)/Support(X)

�Contingency tables (correlation, X2)

s({}) - s(X) -s(Y) + s(XY)s(X) - s(XY)¬Y

s(Y) - s(XY)s(XY)Y

¬XX

Summary

� Frequent Itemset Mining

� Algorithms

� Constraint Based Mining

� Condensed Representations

Algorithms

� There exist hundreds of algorithms that

solve FIM (or related problems)

�AIS, Apriori, AprioriTID, AprioriHybrid,

FPGrowth, FPGrowth*, Eclat, dEclat, Pincer-

search, ABS, DCI, kDCI, LCM, AIM, PIE,

ARMOR, AFOPT, COFI, Patricia,

MAXMINER, MAFIA, NDI-ALL, …

Algorithms

� There exist hundreds of algorithms that

solve FIM (or related problems)

� Concentrate on the most important

pruning principle:

�Monotonicity

and the two main search strategies:

�Breadth-first

�Depth-first

Monotonicity Principle

� If I⊆J, then support(I)≥support(J)

� Therefore, if I is infrequent, then all its

supersets are infrequent as well.

� All FIM algorithms rely heavily on this

principle to prune large parts of the search

space.

Search Space

ABC ABD ACD BCD

AB BCAC AD CDBD

A CB D

{}

ABCD

AB infrequent

Levelwise Algorithm

� Exploits monotonicity as much as

possible.

� Search Space is traversed bottom-up,

level by level

� Support of an itemset is only counted in

the database if all its subsets were

frequent.

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

0 0 0 0

Candidates

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

0 1 1 0

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

0 2 2 0

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

1 2 3 1

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

2 3 4 2

Apriori

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

2 4 4 3

Apriori

AB BCAC AD CDBD

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

2 4 4 3

Candidates

Apriori

AB BCAC AD CDBD

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

2 4 4 3

1 2 2 3 2 2

Apriori

ACD BCD

AB BCAC AD CDBD

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

1 2 2 3 2 2

Candidates

2 4 4 3

Apriori

ACD BCD

AB BCAC AD CDBD

A CB D

{}

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

minsup=2

1 2 2 3 2 2

2 1

2 4 4 3

Depth-First Algorithms

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

Find all frequent itemsets

Find all frequent itemsets, with D Find all frequent itemsets, without D

Depth-First Algorithm

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

1

1

0

0

1

1

1

1

0

3

4

5

CBATID

1

1

3

4

ATID

DB[D]

DB[CD]

TID

DB[BD]

1

1

0

1

0

0

1

1

1

2

3

4

BATID

DB[C]

TID

DB[BC]

TID

DB[B]

A,B,C,D

AD, BD, CD

ACD

AC, BC

Breadth-First vs Depth-First

� Depth-first outperformes breadth-first

�Number of frequent itemsets is very high

�Database is relatively small

� Breadth-first outperformes depth-first

�Number of frequent sets is small

�Database is large

� Differences usually very small

Summary

� Frequent Itemset Mining

� Algorithms

� Constraint Based Mining

� Condensed Representations

Mining With Constraints

� Reduce output size, user sets focus

� itemsets of size > 5

�sets of products with cost less than 10 EUR

�sets that contain A, B, or C.

�sets that are frequent in dataset D1, but

infrequent in D2

Mining With Constraints

� Types of constraints

� (Anti-)Monotone,

�Succinct

�Convertible

� Two Approaches

�Pushing constraints into the mining algorithm

�Changing the Database

Types of Constraints

� Anti-monotone

�Support, size < 10, …

Types of Constraints

� Monotone

�Cost >10EUR, Contains A, B, or C, …

Types of Constraints

� Succinct

�Can be expressed using minus and union on

a fixed number of powersets

� E.g., Contains A or B, but not C: 2I-C – 2I-AB

�Can be generated efficiently

� Convertible anti-monotone

�Anti-Monotone w.r.t. prefix-order

� E.g. avg(I.price)<10 EUR when ordered ascending

by price.

Mining With Constraints

� Two approaches:

�Pushing constraints deep in data mining

algorithm

�Changing database such that

� Support of itemsets satisfying the constraint does

not change

� The support of itemsets that do not satisfy the

constraint decreases

Pushing Constraints

+

+

+

+
+ +

+

+

+

+

+

+
+

+

+
+
+
+

+

Monotone

Anti-monotone

Frequency

Pushing Constraints

� Trade-off

�Pushing monotone constraints

�vs. anti-monotone pruning

� Not always better to push monotone

constraints

�E.g. Size > 10 …

Changing the Database

� ExAnte Algorithm

�Exploit Monotone and Anti-monotone

constraints

�A transaction that does not satisfy a

monotone constraint will not contribute to any

itemset satisfying the constraints

� E.g. constraint “size > 10”: every transaction of

size < 10 can be thrown away!

Changing the Database
minsup = 3 anti-mon.

size ≥ 4 monotone

0010010107

1000011016

1000111115

1101100014

1010011113

0101001012

0010100111

IHGFEDCBAID

Summary

� Frequent Itemset Mining

� Algorithms

� Constraint Based Mining

� Condensed Representations

Condensed Representations

� Sometimes, the output of frequent set

mining remains too large:

�Huge number of items

�Highly correlated

�High support items

� Hence, instead of mining all itemsets

�Condensed representation

Condensed Representations

� Closed sets

�Divide frequent itemsets into equivalence

classes

�Two itemsets are equivalent if they occur in

the same transactions

�Closed set: maximal element in an

equivalence class

Closed Itemsets

� All sets in the same equivalence class

have the same support

�Occur in the same transactions

� Maximal element in an equivalence class

is unique

� If two itemsets occur in the same transactions,

then so does their union

Closed Itemsets

ABC ABD ACD BCD

AB BCAC AD BD

A CB D

{}

ABCD

CD

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

2

3

4

5

DCBATID

Closed Itemsets

� Has nice mathematical properties

�Closed sets form a lattice

�Galois connection

� Efficient algorithms to find them

� Based on the closed sets, it is easy to find

the support of the other itemsets.

Closed Itemsets

� Interesting class of patterns

�Maximal frequent itemsets are closed sets

�Highest correlation between items

�Strongest association rules

� Significant reduction of number of itemsets

�Especially with small number of large

transactions

Non-Derivable Itemsets

� Based on redundancies

�How do supports interact?

� What information about unknown supports

can we derive from known supports?

�Concise representation: only store relevant

part of the supports

Redundancies

� Agrawal et al. (Monotonicity)

�Supp(AX) ≤ Supp(A)

� Boulicaut et al., Lakhal et al. (Free sets)

� If Supp(A) = Supp(AB) (Closed sets)

Then Supp(AX) = Supp(AXB)

Redundancies

� Bayardo

(MAXMINER)

�Supp(ABX) ≥ Supp(AX) – (Supp(X)-Supp(BX))

� Bykowski, Rigotti (Disjunction-free sets)

if Supp(ABC) = Supp(AB) + Supp(AC) –

Supp(A), then Supp(ABCX) can be derived

from ABX, ACX, AX

drop (X, B)

The Inclusion – Exclusion

Principle
A B

C

| A ∪ B ∪ C | = | A | + | B | + | C |

- | A ∩ B | - | A ∩ C | - | B ∩ C |

+ | A ∩ B ∩ C |

Deduction Rules via Inclusion-

Exclusion

� Let A, B, C, … be items

� Let A’ correspond with the set

{ transaction t | t contains A }

� AB’ = A’ ∩ B’

� Then: Supp(ABC) = | ABC’ |

Deduction Rules via

Inclusion-Exclusion

� Inclusion-exclusion principle:

| A’ ∪ B’ ∪ C’ | = |A’| + |B’| + |C’|

- |AB’| -|AC’| - |BC’|

+ |ABC’|

Thus, since | A’ ∪ B’ ∪ C’ | ≤ n,

Supp(ABC) ≤≤≤≤ s(AB) + s(AC) + s(BC)

- s(A) – s(B) – s(C) + n

Complete Set for Supp(ABC)

sABC ≥ 0

sABC ≤ sAB
sABC ≤ sAC Monotonicity
sABC ≤ sBC

sABC ≥ sAB + sAC – sA
sABC ≥ sAB + sBC – sB Disjunction-Free
sABC ≥ sAC + sBC – sC

sABC ≤ sAB + sAC + sBC – sA – sB – sC + n

0

1

2

3

Free, Closed

Derivable Itemsets

Given: Supp(I) for all I ⊂ J

Lower bound on Supp(J) = l

Upper bound on Supp(J) = u

� Without counting : Supp(J) ∈ [l,u]

� J is a derivable itemset (DI) iff l = u

�We know Supp(J) exactly without counting!

Derivable Itemsets

J derivable itemset:

� No need to count Supp(J)

� No need to store Supp(J)

�We can use the deduction rules

� Concise representation:

C = { (J, Supp(J)) | J not derivable from

Supp(I), I ⊂ J }

Derivable Itemsets

Theorem (Monotonicity)

If J ⊂ K, J derivable, then K derivable.

Moreover:

The width of the interval for J∪{A} is

at most half the size of the interval for J !

IV. Evaluation --- Theoretical

� Interval widths decrease exponentially

�Half each step

� Non-derivable itemset can never be larger

than log(|Database|)

� Independent of sparse, dense, ...

Evaluation --- Empirically

� Size NDI vs. frequent itemsets

� Comparison with Other Concise Reps

PUMSB

PUMSB

Evaluation

� Number of frequent NDIs considerable

smaller than number of frequent itemsets

� Algorithm is efficient

�Calculating NDI + deducing DIs often

outperforms Apriori

Condensed Representations

� Many other representations

�Free sets

�Disjunction-free sets

�Generalized disjunction-free sets

�…

� Closed sets and NDIs provable the

smallest ones

Conclusion

� Depth-first vs Breadth-first algorithms for
FIM

� Constraint mining to incorporate user
focus

�Pushing constraints vs changing database

� Condensed Representations

�Closed sets

�Non-Derivable Itemsets

Topics Not Covered …

Parallel algorithms for FIM

Incremental FIM

Generalized, Quantitative, Multi-level, Fuzzy ARs

Coupling FIM with RDBMS

Privacy Preserving ARM

Computational Complexity Results

Inverse mining problem

Emerging Patterns, jumping emerging patterns

Dependency value, X2

Lift, gain

Block support, tilings,

…

